• 제목/요약/키워드: Thermal-Stress Analysis

검색결과 1,526건 처리시간 0.032초

형산큰다리 교각기초 콘크리트의 수화열 해석 및 적용 (Analysis of Heat of Hydration for Hyungsan Bridge)

  • 안동근;김명모
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.715-722
    • /
    • 2001
  • The main purpose of this study is to evaluate early age thermal stresses and to estimate the risk of thermal cracking in the footings of Hyungsan bridge. In this study, stress analyses are performed for several construction stages using the computation of temperature distributions. The stress analysis results show that, not using the embedded pipe cooling, placing the concrete at once for each footings may cause sever thermal cracking. So, the structures should be constructed with one horizontal construction joint. Then the height of each lifts were determined to be 1.50 meters. Using various time intervals between lifts, temperature and stress.

  • PDF

열피로 해석시 응력전달함수에 미치는 열적 재료 성질의 영향 (Effect of Thermophysical Properties on Stress Transfer Function ofr Thermal Fatigue Analysis)

  • 김영진;석창성;박종주
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.172-179
    • /
    • 1996
  • For mechanical systems operating at high tempertature, thermal fatigue phenomenon has been recognized as a major cause of mechanical component failures. To evaluate cumulative fatigue damage as a conesquence of thermal fatugue on real time, the stress tranfer function(Green's function) approach is popularly used. The objective of this paper is to investigate the effect of thermophsical properties on the stress tranfer function. For this purpose a modified Green's function approach considering temperature-dependent thermophysical properties is proposed. Two case studies were performed and the proposed approach agrees well with full finite element analysis.

순간가열(瞬間加熱)된 Strip의 과도적열응력해석(過渡的熱應力解析) (Thermal Stress Analysis in the Vicinity of Butt Welded Joiny of a Strip)

  • 박종은;김효철
    • 대한조선학회지
    • /
    • 제10권1호
    • /
    • pp.15-20
    • /
    • 1973
  • In this paper, it is desired to show a simplified analytical method in estimating the thermal stresses in the heat affected zone of butt welded joint. A finite strip as shown in Fig.1 is taken as a analytical model for stress analysis. Expressing the temperature distributions by Fourier series, the thermal stresses are obtained. From the numerical sample calculation, the following results can be obtained. (1) Thermal stresses can be estimated by the sujected method. (2) The stress component, which is parallel to the weld direction is the largest stress component in major part of the strip. (3) In obtaining a stress component for the engineering purpose, length of the strip can be treated as five times of the thickness with same degree of convergency.

  • PDF

Stress Analysis in Cooling Process for Thermal Nanoimprint Lithography with Imprinting Temperature and Residual Layer Thickness of Polymer Resist

  • Kim, Nam Woong;Kim, Kug Weon
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.68-74
    • /
    • 2017
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Up to now there have been a lot of researches on thermal NIL, but most of them have been focused on polymer deformation in the molding process and there are very few studies on the cooling and demolding process. In this paper a cooling process of the polymer resist in thermal NIL is analyzed with finite element method. The modeling of cooling process for mold, polymer resist and substrate is developed. And the cooling process is numerically investigated with the effects of imprinting temperature and residual layer thickness of polymer resist on stress distribution of the polymer resist. The results show that the lower imprinting temperature, the higher the maximum von Mises stress and that the thicker the residual layer, the greater maximum von Mises stress.

  • PDF

주조 공정 시 열변형 예측과 제어를 통한 금형의 최적 설계에 관한 연구 (The Optimum Design of Casting Process through Prediction and control of Thermal Deformation)

  • 최봉학;곽시영;김정태;최정길;이동일
    • 한국주조공학회지
    • /
    • 제25권5호
    • /
    • pp.209-215
    • /
    • 2005
  • The design of the Metal mold casting should consider several variables such as the material properties and shape of the mold. In particular, the thermal stress generated by the thermal expansion and contraction depending on the thermal gradient of the mold causes partial plastic deformation on the mold, which causes damage or fracture of the cast. Consequently, the thermal deformation along with thermal stress leads to thermal deformation of the cast itself. In this study, the temperature analysis of the cast and mold is simulated by FDM to control the thermal deformation and stress as a result of the thermal gradient of mold. Using the results from FDM simulation, the thermal deformation and stress are analyzed by FEM and, the optimal mold design with minimum thermal deformation of the cast is suggested.

CPU 쿨러의 열 및 응력 해석에 관한 융합 연구 (A Convergent Investigation on the thermal and stress analyses of CPU Cooler)

  • 최계광;조재웅
    • 한국융합학회논문지
    • /
    • 제11권8호
    • /
    • pp.153-158
    • /
    • 2020
  • 본 연구에서는 CPU쿨러 모델에서 100℃의 온도 조건을 가하여서 열 및 응력 해석을 하였다. 열유속의 값은 아래쪽 봉 부분에서 가장 많고 전반적으로 위쪽 부분으로 갈수록 열유속이 작아짐을 볼 수 있다. CPU 쿨러 모델의 제일 바닥에 있는 면에서 제일 높음을 알 수 있고 전반적으로 위쪽 부분으로 갈수록 온도는 작아짐을 볼 수 있다. 온도 해석을 기반으로 열팽창으로 인한 열변형은 겹판들의 위부분으로 갈수록 변형량이 작아짐을 알 수 있고, 모델의 아래부분으로 작은 봉의 휘어진 부분에서 변형량이 많이 발생하고 모델 맨 아래의 바닥면에서는 변형량이 가장 작음을 볼 수 있다. 또한 열응력은 아래의 바닥면에서 570.63 MPa의 최대 열응력이 발생하고 있다. 겹판들의 위부분으로 갈수록 응력이 작아짐을 알 수 있으나, 모델의 중앙부분에서는 그 응력이 다소 높아짐음을 볼 수 있다. CPU 쿨러의 열 및 응력에 대한 연구결과를 적용함으로서, 본 연구가 미적인 융합에 적합된다고 보인다.

GMP 공정용 3 cavity 유리 렌즈 금형의 열변형에 관한 연구 (A study on the thermal deformation of 3 cavity GMP mold for glass lens)

  • 장성호;허영무;신광호;정태성
    • Design & Manufacturing
    • /
    • 제2권6호
    • /
    • pp.38-42
    • /
    • 2008
  • Recently, the demands of digital camera and miniature camera module for mobile-phone is increased significantly. Lenses which is the core component of optical products are made by the injection molding(plastic lens) or GMP(glass lens). Plastic lens is not enough to improve the resolution and performance of optic parts. Therefore, the requirement of glass lens is increased because it is possible to ensure the high performance and resolution. In this paper, the thermal stress analysis of 3 cavity GMP mold for molding glass lens was performed for estimating the thermal stress and amount of deformation. Finally, the modification plan based on the analysis results was deducted.

  • PDF

Comparison of Transverse Flux Rotary Machines with Different Stator Core Topologies

  • Lee, Jiyoung;Chung, Shiuk;Koo, Daehyun;Han, Choongkyu
    • Journal of Magnetics
    • /
    • 제19권2호
    • /
    • pp.146-150
    • /
    • 2014
  • The objective of this paper is to provide a comparison between two transverse flux rotary machines (TFRM) with different topologies of stator cores. Depending on how to make stator core with laminated steel sheets, the one topology is 'perpendicular stacking core' and the other is 'separated core'. Both of the two cores have been designed considering 3-dimensional (3-D) magnetic flux path with the same output power conditions, but the core losses are quite different and it causes different magnetic and thermal characteristics. For comparison of these two topologies of stator cores, therefore, core losses have been calculated and used as a heat source in no-load conditions, and the thermal stress has been also calculated. 3-D finite element method has been used for the magnetic field, thermal, and stress analysis to consider the 3-D flux path of the TFRM. After comparing the analysis results of the two topologies, experimental results are also presented and discussed.

용탕유동과 응고를 고려한 주조공정의 유한요소해석

  • 윤석일;김용환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.620-625
    • /
    • 1995
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting processes consists of mold filling and solifification. In order to investigate the effects of process variables and to predict the defects, both filling and solidiffication process were simulated simultaneously. At filling process, especiallywe consider thermal coupling to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simulation of the actual casting processes. At mold filling process, Lagrangian-type finite element method with automatic remashing scheme was used to find the material flow. To avoid numerical instability in low viscous fluid, a perturbation method with artificial viscosity is adopted. At solififfication process, enthalpy-based finite element method was used to solve the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidiffication time, position of solidus line, liquidus line and thermal residual stress are studied. Finite element tools developed in this study will be used process design of casting process and maybe basic structure for total CAE system of castigs which will be constructed afterward.

냉연 압연 강판의 레이저 용접 공정 시 발생하는 응력 평가 (Evaluation of the Stress Occurring Phenomenon for Cold-Rolled Carbon Steel During a Laser Welding Process)

  • 이철구;이우람
    • Journal of Welding and Joining
    • /
    • 제31권1호
    • /
    • pp.51-57
    • /
    • 2013
  • Residual stress caused in the weldments with high restraint force are often observed during welding in the weldments of Inner and outdoor materials or radial tanks. The reason is that quantitative analysis about thermal stresses during laser welding is lacking for this weldments. To verify Finite Elements Method (FEM) theory, the temperature was measured with thermocouple in a real time in this paper. Also analysis of the thermal stress for welding condition is performed by Comsol program package on various welding condition in SCP1-S butt welding. The principal stress in laser welding process is seen through the width direction. Also, it was confirmed that a change in base metal by thermal expansion made the stress in width direction stronger. Base metal close to the weld bead as the process progresses to the tensile stress in the compressive stress was varied. It was shown that the change of stress was quantitative from the bead at a certain distance.