• 제목/요약/키워드: Thermal-Mechanical Fatigue

검색결과 291건 처리시간 0.028초

변형률분할법에 의한 12Cr 단조강의 열피로 수명예측 (Thermal-mechanical Fatigue Life Prediction of 12Cr Forged Steel Using Strain Range Partitioning method)

  • 하정수;옹장우;고승기
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1192-1202
    • /
    • 1994
  • Fatigue behavior and life prediction were presented for thermal-mechanical and isothermal low cycle fatigue of 12Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test at 350 to 600.deg. C and isothermal low cycle fatigue test at 600.deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Cyclic softening behavior was observed regardless of thermal-mechanical and isothermal fatigue tests. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. The difference in fatigue lives was dependent upon the magnitudes of inelastic strain ranges and mean stresses. Increase in inelastic strain range showed a tendency of intergranular cracking and decrease in fatigue life, especially for out-of-phase thermal-mechanical fatigue. Thermal-mechanical fatigue life prediction was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase thermal-mechanical fatigue lives, which was quite improved conservatively by a proposed strain range partitioning method.

유지시간 효과를 고려한 12Cr 내열강의 열피로 및 저주기 피로 특성 (Thermal-Mechanical and Low Cycle Fatigue Characteristics of 12Cr Heat Resisting Steel with Hold Time Effects)

  • 하정수;고승기;옹장우
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.1-12
    • /
    • 1995
  • Isothermal and thermal-mechanical fatigue characteristics of 12Cr heat resisting steel used for high temperature applications were investigated including hold time effects. Isothermal low cycle fatigue test at $600^{\circ}C$ and in-phase, out-of-phase thermal-mechanical fatigue test at 350 to $600^{\circ}C$ were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Regardless of thermal-mechanical and isothermal fatigue tests, cyclic softening behavior was observed and much more pronounced in the thermal-mechanical fatigue tests with hold times due to the stress relaxation during the hold time. The phase difference between temperature and strain in thermal-mechanical fatigue tests resulted in significantly shorter fatigue life for out-of-phase compared to in-phase. The differences in fatigue lives were dependent upon the magnitudes of plastic strain ranges and mean stresses. During the hold time in the strain-controlled fatigue tests, the increase in the plastic strain range and the stress relaxation were observed. It appeared that the increase in plastic strain range per cycle and the introduction of creep damage made important contributions to the reduction of thermal-mechanical fatigue life with hold time, and the life reduction tendency was more remarkable in the in-phase than in the out-of-phase thermal-mechanical fatigue. Isothermal fatigue tests performed under the combination of fast and slow strain rates at $600^{\circ}C$ showed that the fatigue life decreased as the strain rate and frequency decreased,especially for the low strain ranges.

  • PDF

12 Cr 강의 열피로 수명단축에 관한 연구 (A study on the thermal-mechanical fatigue life prediction of 12 Cr steel)

  • 하정수;김건영;안희돈
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.114-125
    • /
    • 1994
  • Fatigue behavior and life prediction method were presented for themal-mechanical and isothermal low cycle fatigue of 12 Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test from 350 .deg. C to 600 .deg. C and isothermal low cycle fatigue test at 600 .deg. C, 475 .deg. C, 350 .deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. Thermal-mechanical fatigue life predication was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase range partitioning method in a conservative way. By the way life prediction of thermal-mechanical fatigue by Taira's equivalent temperature method and spanning fartor method showed good agreement within out-of-phase thermal-mechanical fatigue.

  • PDF

Darveaux 모델에 의한 플립칩 패키지 솔더 접합부의 열피로 해석 및 수명 평가 (The Thermal Fatigue Analysis and Life Evaluation of Solder Joint for Flip Chip Package using Darveaux Model)

  • 신영의;김연성;김종민;최명기
    • Journal of Welding and Joining
    • /
    • 제22권6호
    • /
    • pp.36-42
    • /
    • 2004
  • Experimental and numerical approaches on the thermal fatigue for the solder joint of flip chip package are discussed. However, it is one of the most difficult problems to choose the proper fatigue model. It was found that viscoplstic FE model with Darveaux method was very desirable and useful to predict the thermal fatigue life of solder joint for flip chip package under $208{\~}423K$ thermal cycling condition such as steep slope of temperature(JEDEC standard condition C). Thermal fatigue life was 1075 cycles as a result of viscoplatic model. It was a good agreement compared to the experimental. And also, it was found from the experimental that probability of the thermal fatigue life was $60{\%}$ at 1500 cycles.

열하중과 굽힘 하중 조건에서의 솔더조인트 피로 특성 비교연구 (A Comparative study on the solder joint fatigue under thermal and mechanical loading conditions)

  • 김일호;이순복
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제7권2호
    • /
    • pp.45-55
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. Firs, cyclic bending tests were performed using the micro-bending tester. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. Creep deformation was dominant in thermal fatigue and plastic deformation was main parameter for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

TGO 성장이 열피로 수명에 미치는 영향 평가 (Evaluation of Effect on Thermal Fatigue Life Considering TGO Growth)

  • 송현우;이정민;김용석;오창서;한규철;이영제;구재민;석창성
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1155-1159
    • /
    • 2014
  • Thermal barrier coating (TBC) which is used to protect the substrate of gas turbine is exposed to high temperature environment. Because of high temperature environment, thermally grown oxide (TGO) is grown at the interface of thermal barrier coating in operation of gas turbine. The growth of TGO critically affects to durability of TBC, so the evaluation about durability of TBC with TGOs of various thickness is needed. In this research, TGO was inserted by aging of TBC specimen to evaluate the effect of the TGO growth. Then thickness of TGO was defined by microstructure analysis, and thermal fatigue test was performed with these aging specimens. Finally, the relation between thermal fatigue life and the TGO growth according to aging time was obtained.

열간단조 금형강의 열충격과 열피로 특성연구 (Analysis of Thermal Shock and Thermal Fatigue in Tool Steels for Hot Forging)

  • 김정운;문영훈;류재화;박형호
    • 소성∙가공
    • /
    • 제11권1호
    • /
    • pp.61-68
    • /
    • 2002
  • The thermal shock and thermal fatigue test has been carried out to analyze the thermal characteristics of tool steels for hot forging and the effects of mechanical properties on this study have been investigated. The resistance to thermal shock is first of all a matter of good toughness and ductility. Therefore, a proper hot-work tool steel should be characterized by high fracture strength and high temperature toughness. Based on these results, some critical temperature($T_{fracture}$) at which fracture occur can be measured to characterize the thermal resistance of the materials. During thermal fatigue tests, the thermal fatigue cracks occur because of the repetitive heating and cooling of the die surface and the thermal fatigue damage was evaluated by analyzing different number of cycles to failure. The results showed that the resistance to thermal shock and thermal fatigue were found to be favoured by high hot tensile strength and high hot hardness, and thermal resistance of SKD61 was superior to that of ESC, SKT4 and this was caused by higher mechanical properties of SKD61.

원전 안전 3 등급 고밀도 폴리에틸렌 매설 배관 맞대기 열 융착부의 인장 피로특성 평가 (Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants)

  • 김종성;이영주;오영진
    • 대한기계학회논문집A
    • /
    • 제39권1호
    • /
    • pp.11-17
    • /
    • 2015
  • 최근에 원자력 발전소 안전 3 등급 배관에 적용되고 있는 고밀도 폴리에틸렌 배관은 융착표면을가열한 후 축방향으로 가압하는 열 융착 공정을 이용하여 맞대기 융착되어진다. 이러한 열 융착공정은 맞대기 융착부에 비드 형상을 발생시킨다. 이러한 비드 형상의 응력집중에 기인하여 피로수명이 줄어들 수 있다. 따라서 피로거동에 미치는 맞대기 열 융착부 비드의 효과를 고찰하는 것이 필요하다. 본 연구에서는 응력 제어 조건 하의 인장 피로 시험과 유한요소 탄성응력 해석을 수행하여 맞대기 열 융착부의 인장 피로 거동을 고찰하였다. 고찰 결과, 중주기 및 고주기 피로 영역에선 피로수명에 미치는 비드의 영향이 미미한 반면 저주기 피로 영역에선 비드의 존재가 피로 수명을 감소시킴을 확인하였다.

Evaluation of Thermal Durability of Thermal Barrier Coating and Change in Mechanical Behavior

  • Lee, Dong Heon;Kang, Nam Kyu;Lee, Kee Sung;Moon, Heung Soo;Kim, Hyung Tae;Kim, Chul
    • 한국세라믹학회지
    • /
    • 제54권4호
    • /
    • pp.314-322
    • /
    • 2017
  • This study investigates changes in the mechanical behavior, such as changes in indentation load-displacement curve, wear resistance and contact fatigue resistance of thermal barrier coatings (TBCs) by thermal cycling test and thermal shock test. Relatively dense and porous TBCs on nickel-based bondcoat/superalloy are prepared; the highest temperature applied during thermal durability test is $1350^{\circ}C$. The results indicate that the porous TBCs have relatively longer lifetime during thermal cycling and thermal shock tests, while denser TBCs have relatively higher wear and contact fatigue resistance. The mechanical behavior is influenced by sintering of the TBCs by exposure to high temperature during tests.