• Title/Summary/Keyword: Thermal system

Search Result 8,089, Processing Time 0.033 seconds

Design Golas for the Space Shuttle's Thermal Protection System (Space shuttle의 Thermal Protection System의 설계 목표)

  • 김선규
    • Journal of Astronomy and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.35-39
    • /
    • 1984
  • The design of the reusable thermal protection system for the space shuttle orbiter using silica tile played one of key roles in the successful flight of the Columbia and subsequent space shuttles. The basic design goals for this thermal protection system were identified. Manufacturing procedures for the silica tile and the structure of the tile system were also described.

  • PDF

Study on the Personal Air-Conditioning System Considering Human Thermal Adaptation (인간의 열적 적응성을 고려한 퍼스널 공조시스템의 개발)

  • 송두삼
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.524-532
    • /
    • 2003
  • In this paper, a personal air-conditioning system considering the human thermal adaptability is analyzed. Although the conventional personal air-conditioner was proofed to be satisfactory in providing for the thermal comfort, it is being questioned on the term of its energy efficiency. Therefore, it is important and urgent to develop new types of personal air-conditioning system with sustainable control strategy that can ensure energy saving and thermal comfort simultaneously. In this study, we first examined the problems of the conventional personal air-conditioning system with field interview and laboratory experiment in terms of usage, management and thermal comfort, and proposed the energy-saving personal air-conditioning system considering the human thermal adaptation. Then a laboratory experiment was performed to analyze the characteristics of the human thermal comfort under severe indoor thermal conditions, which were controlled using a new personal air-conditioning unit designed according to the proposal. The results help to illustrate the alleviation effect of the new personal air-conditioning system, and indicate that the thermal alleviation time is useful to maintain the thermal comfort with efficient usage of energy.

Analysis of Supply Airflow Control by a Stratified Thermal Model in a VAV System

  • Kim, Seo-Young;Moon, Jeong-Woo;Cho, Hyung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.46-56
    • /
    • 2001
  • The present study concerns the numerical simulation of a supply airflow control in a variable air volume (VAY) system. A stratified thermal model (multi-zone model) is suggested to predict a local thermal response of an air-conditioned space. The effects of various thermal parameters such as the cooling system capacity, the thermal mass of an air-conditioned space, the time delay of thermal effect, and the building envelope heat transmission are investigated. Further, the influence of control parameters such as the supply air temperature, the PI control factor and the thermostat location on a VAV system is quantitatively delineated. The results obtained show that the previous homogeneous lumped thermal model (single zone model) may overestimate the time taken to the set point temperature. It is also found that there exist the appropriate ranges of the control parameters for the optimal airflow control of the VAV system.

  • PDF

Thermal Buckling Characteristics for Thermal Protection System Panel Using Ritz Method (리츠 법을 이용한 열방어 시스템 패널의 열 좌굴 특성 연구)

  • Lee, Heesoo;Kim, Yongha;Park, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.18-28
    • /
    • 2019
  • High speed vehicles are subjected to high thermal loadings due to aerodynamic heating during ascent and reentry. Since a thermal protection system panel is mechanically constrained, it may cause thermal buckling under excessive thermal loadings. The thermal buckling could disturb the field of flow and make aerodynamic characteristics unstable. It is thus necessary to design the thermal protection system panel to prevent thermal buckling. This study defines the analytical model of temperature distribution using the finite difference method for the thermal protection system panel with large temperature differences inside and outside. This paper proposes the approximate model of the thermal buckling characteristics for the thermal protection system panel through the use of the Ritz method. The validity of the present method was verified by comparing the results of the finite element analysis. Furthermore, this research performs the parametric analysis of the thermal buckling characteristics for the thermal protection system panel by using the approximate model.

Study on Non-uniform Thermal Comfort in Hybrid Air-Conditioning System with CFD Analysis (CFD 해석을 통한 하이브리드 공조시스템의 인체 온열감의 불균일성에 관한 연구)

  • Nam, Yu-Jin;Sung, Min-Ki;Song, Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.216-222
    • /
    • 2011
  • Recently, hybrid air-conditioning system has been proposed and applied to achieve building energy saving. One example is a system combining radiation panel with natural wind-induced cross-ventilation. However, few research works have been conducted on the non-uniformity of thermal comfort in such hybrid air-conditioning system. In this paper, both thermal environment and non-uniform thermal comfort of human thermal model under various air-conditioning system, including hybrid system, were evaluated in a typical office room using coupled simulation of computation fluid dynamics, radiation model and a human thermal model. The non-uniformity of thermal comfort was evaluated from the deviation of surface temperature of human thermal model. Flow fields and temperature distribution in each case were represented.

The Trend of System Level Thermal Management Technology Development for Aero-Vehicles (항공기 시스템 레벨 열관리 기술개발 동향)

  • Kim, Youngjin;Son, Changmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Modern aircraft is facing the increase of power demands and thermal challenges. In accordance with the application of more electric technology and advanced mission requirement, aircraft system requires increase of power generation and it cause increase of internal heat generation. Simultaneously, restrictions have significantly been imposed to the thermal management system. Modern aircraft must maintain low radar observability and infra-red signature. In addition, new composite aircraft skins have reduced the amount of heat that can be rejected to the environment. The combination of these characteristics has increased the challenges faced by thermal management. In order to mitigate the thermal challenges, the concept of system level thermal management should be applied and new modeling and simulation tools need to be developed. To develop and utilize system level thermal management technology, three key points are considered. Firstly, the performance changes of subsystems and components must be assessed at an integrated thermal system. It is because that each subsystem and component interacts with other subsystems or components and it can directly effects on overall system performance. Secondly, system level thermal management requirements and solutions must be evaluated early in conceptual design process as vehicle and propulsion system configuration decisions are being made. Finally, new component level thermal management technologies must focus on reducing heat generation and increasing the availability of heat sinks.

Configuration of a Boiler Control System in Thermal Power Plant (화력 발전소 보일러 제어 시스템의 구성에 관한 연구)

  • 변승현;박두용;김병철;신만수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.168-168
    • /
    • 2000
  • In this paper, a boiler control system for thermal power plant is configured. The boiler control system for thermal power plant is largely composed of an ABC(Automatic Boiler Control) system and a MBC(Mill Burner Control) system. ABC system controls analog process values, so almost all analog control logic is dealt with in ABC system. On the other hand, MBC system relates to sequence control logic such as MFT logic, Furnace Purge, Safety related logic. Advanced control systems made from advanced countries deal with an ABC system and MBC system in a distributed control system. In this paper, we adopt a DCS as an ABC system and adopt a PLC system as a MBC system to configure a boiler control system for thermal power plant using domestic control system. Finally the validity of the configured boiler control system is shown via simulation using digital simulator for boiler system in thermal power plant.

  • PDF

Implementation of a Thermal Imaging System with Focal Plane Array Typed Sensor (초점면 배열 방식의 열상카메라 시스템의 구현)

  • 박세화;원동혁;오세중;윤대섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.396-403
    • /
    • 2000
  • A thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main part of the system is a thermal camera in which a focal plane array typed sensor is introduced. The sensor detects the mid-range infrared spectrum of target objects and then it outputs a generic video signal which should be processed to form a frame thermal image. Here, a digital signal processor(DSP) is applied for the high speed processing of the sensor signals. The DSP controls analog-to-digital converter, performs correction algorithms and outputs the frame thermal data to frame buffers. With the frame buffers can be generated a NTSC signal and transferred the frame data to personal computer(PC) for the analysis and a monitoring of the thermal scenes. By performing the signal processing functions in the DSP the overall system achieves a simple configuration. Several experimental results indicate the performance of the overall system.

  • PDF

Simulation of Supply Air Control in a VAV System Using a Stratified Lumped Thermal Model (성층화 열용량 모델을 이용한 VAV 시스템 급기 제어 시뮬레이션)

  • 문정우;김서영;김원년;조형희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.632-641
    • /
    • 2000
  • The present study concerns the simulation of supply-air control in a variable air volume (VAV) system. A stratified lumped thermal model (multi-zone model) is suggested to predict local thermal response of an air-conditioned space. The effects of various thermal parameters such as the cooling system capacity, the thermal mass of air-conditioned space, the time delay of thermal effect, and the building envelope heat transmission are investigated in detail. Further, the influence of control parameters, PI control factor and the sensor location on a VAV system is quantitatively delineated. The results obtained show that the previous homogeneous lumped thermal model (1-zone model) may predict a significantly different thermal response in the air-conditioned space according to the sensor location.

  • PDF

Development of Thermal Storage System in Plastic Greenhouse(II) -Thermal performance of solar greenhouse system for hydroponic culture- (플라스틱 온실(溫室)의 열저장(熱貯藏) 시스템의 개발(開發)에 관(關)한 연구(硏究)(II) -수경재배용(水耕栽培用) 태양열(太陽熱) 온실(溫室) 시스템의 열적(熱的) 성능(性能)-)

  • Kim, Y.H.;Koh, H.K.;Kim, M.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.123-133
    • /
    • 1990
  • Thermal performance of a solar heating plastic greenhouse designed for a hydroponic system was studied. The system was constructed with the air-water heat exchanger and thermal storage tank that were combined with hydroponic water beds. Experiments were carried out to investigate the daily average heat stored and released in thermal storage tank, average solar energy collection efficiency, average coefficient of performance, average oil reduction factor of thermal storage system, and the heat transfer coefficient during the nighttime in plastic greenhouse. The results obtained in the present study are summarized as follows. 1. Daily average heat stored in thermal storage tank and released from the thermal storage tank was 1,259 and $797KJ/m^2$ day, respectively. 2. The average solar energy collection efficiency of thermal storage tank was 0.125 during the experiment period. And the average coefficient of performance of thermal storage system in plastic greenhouse was 3.6. 3. The average oil reduction factor of thermal storage system and the heat transfer coefficient during the nighttime in plastic greenhouse were found to be 0.52 and $4.3W/m^2\;hr\;^{\circ}C$, respectively.

  • PDF