• Title/Summary/Keyword: Thermal stress

Search Result 3,042, Processing Time 0.033 seconds

The Development of Instantaneous Heat Flux Measurement Probe and Calculation of Thermal Stress of Piston by Finite Element Method (순간 열플럭스 측정용 프루브 개발 및 유한요소법에 의한 피스톤 열응력 계산)

  • Lee, J.S.;Woo, J.H.;Lee, E.L.;Jung, I.G.;Lee, H.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.267-275
    • /
    • 1998
  • In this study, the instantaneous heat flux measurement probe and the linkage system for the measurement of the instantaneous temperature and heat flux of the DI mono cylinder diesel engine were developed, and these were proved to have a good reliability and sensibility. A 3-D FEM model which consist of full piston to accommodate the eccentric bowl in the piston head, was applied for the analysis of the thermal stress and the temperature distribution. The mean heat flux on the piston head was used as boundary condition for the analysis of piston. The analysis showed that thermal stress concentrate on the bowl and inner surface of pin hall.

  • PDF

Influence of Endurance tests on Space Charge Distribution of 160kV HVDC XLPE Cable

  • Liu, Yun-Peng;Liu, He-Chen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.302-309
    • /
    • 2017
  • The ageing of XLPE cable insulation will lead to the accelerating accumulation of space charge, which will greatly affect the safe operation of the HVDC cable. In order to investigate the influence of different ageing modes on the space charge distribution of the HVDC cable, thermal stressed, electrical stressed and electro-thermal stressed endurance tests were carried out on the XLPE peelings. The tested XLPE peelings were obtained from 160kV HVDC cable insulation. The endurance tests were carried at thermal stress of 363K, electrical stress of 20kV/mm DC and a combination of both. The Pulsed Electro-Acoustic (PEA) method was used to measure the space charge distribution of the samples. The influences of ageing on the trap energy distribution were analyzed based on the isothermal relaxation theory and the decay characteristics of the space charge. The results showed that thermal ageing would help to improve the crystalline morphologies of the XLPE at the early stage. The total amount of space charge decreased compared to the ones before thermal ageing. The long term of electrical stress would result in the cleavage of polymer molecule chains which would intensify the accumulation of space charge and increase the density and depth of electron traps. With a combination of electrical and thermal stress, the injection and migration of space charge were more significant. Besides, the depth and density of electron traps increased rapidly with the increase of endurance time.

The Plane-Deformation Thermal Elasto-Plastic Analysis During Welding of Plate (평판용접에 관한 평면변형 열탄소성 해석)

  • 방한서;한길영
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1994
  • Welding of structure produces welding residual stresses which influence buckling strength, brittle fracture strength and cold crack on the weld parts. Therefore, it is very important to accurately analyze the residual stress before welding in order to guarantee the safety of weldment. If the weld length is long enough compared to the thickness and the breadth of plate, thermal and mechanical behaviors in the middle portion of the plate are assumed to be uniform along the thickness direction(z-axis). Thus, the following conditions(so-called plane deformation) can be assumed for the plate except near its end;1) distributions of stress and strain are independent on the z-axis;2) plane normal to z-axis before deformation remains plane during and after deformation. In this paper, plane-deformation thermal elasto-plastic problem is formulated by being based on the finite element method. Moreover special regards and paid to the fact that material properties in elastic and plastic region are temperature-dependence. And the method to solve the plane-deformation thermal elasto-plastic problem is shown by using the incremental technique. From the results of analysis, the characterisics of distribution of welding residual stress and plastic strain with the production mechanism are clarified.

  • PDF

Development of Roll Shell for Aluminium Continuous Casters of High Strength and High Toughness (고강도${\cdot}$고인성의 알루미늄 연속 주조기용 롤쉘 개발)

  • Kim B. H.;Park Y. C.;Kim J. T.;Lee W. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.216-222
    • /
    • 2004
  • The caster roll shells have the good thermal conductivity and the low thermal expansion and have to exhibit high enough strength and good ductility at temperature up to $600^{\circ}C$. Thermal stress in particular is very high due to the contact with the liquid aluminium. The main stresses are of thermal origin, which bring a plastic fatigue on surface. This paper will represent one survey about the investigation of the failure of roll shells for continuous casters and an analysis using the simulation of the temperature distribution and the state of stress during hot rolling. Moreover, there will be a discussion on the roll shell of Mod. HAR 5 which is developed by heat treatment process. Mod. HAR 5 has advantages of high strength, high toughness and increased thermal stress resistance while maintaining the same productivity as the conventional roll.

  • PDF

Evaluation of Temperature-dependency of CTE of Materials for MEMS Using ESPI (ESPI를 이용한 MEMS용 소재의 열팽창 계수 온도 의존성 평가)

  • Kim, Dong-Won;Kim, Hong-Jae;Lee, Nak-Kyu;Choi, Tae-Hoon;Na, Kyoung-Hoan;Kwon, Dong-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1315-1320
    • /
    • 2003
  • The thermal expansion coefficient, which causes the micro failure at the interfacial state of thin films is necessary to consider for proper designing MEMS. The effect of temperature on the coefficient of thermal expansion(CTE) of $SiO_2$ and $Si_3N_4$ film was investigated. Thermal strain induced by mismatch of CTE between substrate and thin film continuously measured with resolution-improved electronic speckle pattern interferometry(ESPI). The thermal stress induced by mismatch of CTE derivate through thermal strain. The thermal expansion coefficients of thin film were calculated with the general equation of CTE and thermal stress in thin films, and it confirmed that CTE of $SiO_2$changed from $0.25{\times}10^{-6}/^{\circ}C$ to $1.4{\times}10^{-6}/^{\circ}C$ with temperature increasing from 50 to $600^{\circ}C$

  • PDF

EFFECTS OF PROCESS INDUCED DEFECTS ON THERMAL PERFORMANCE OF FLIP CHIP PACKAGE

  • Park, Joohyuk;Sham, Man-Lung
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.39-47
    • /
    • 2002
  • Heat is always the root of stress acting upon the electronic package, regardless of the heat due to the device itself during operation or working under the adverse environment. Due to the significant mismatch in coefficient of thermal expansion (CTE) and the thermal conductivity (K) of the packaging components, on one hand intensive research has been conducted in order to enhance the device reliability by minimizing the mechanical stressing and deformation within the package. On the other hand the effectiveness of different thermal enhancements are pursued to dissipate the heat to avoid the overheating of the device. However, the interactions between the thermal-mechanical loading has not yet been address fully. in articular when the temperature gradient is considered within the package. To address the interactions between the thermal loading upon the mechanical stressing condition. coupled-field analysis is performed to account the interaction between the thermal and mechanical stress distribution. Furthermore, process induced defects are also incorporated into the analysis to determine the effects on thermal conducting path as well as the mechanical stress distribution. It is concluded that it feasible to consider the thermal gradient within the package accompanied with the mechanical analysis, and the subsequent effects of the inherent defects on the overall structural integrity of the package are discussed.

  • PDF

Effects of Short-term Thermal Stress on the Mouse Serum Concentrations of Cortisol and Dehydroepiandrosterone Sulphate (단기 고온 스트레스가 마우스 혈청 Cortisol, Dehydroepiandrosterone Sulphate 농도에 미치는 영향)

  • 차정호;최광수;최형송
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.1
    • /
    • pp.109-113
    • /
    • 2000
  • This study was carried out to investigate the effect of short-term thermal stress on the serum concentrations of cortisol and DHEAS in BALB / c male mice. Cortisol and DHEAS concentrations in serum were measured by radioimmunoassay(RIA). We found there were significantly increased in the cortisol levels in 30 min-stressed group(T30) compared with control group(p<0.01), and then declined without significance in 120 min-stressed group (T120) compared with T30. By contrast, DHEAS levels were decreased without significance in both T30 and T120 compared with control group. Though short-term thermal stress, the continuous decline of DHEAS levels were observed. These results show that short-term thermal stress affects the serum levels of cortisol and DHEAS in mice. Furthermore, we found that DHEAS is a stress-related hormone and will be able to utilize as a stress marker.

  • PDF

Effect of Thermal Cycle and Stress on the Intergranular Corrosion in 316 Stainless Steel (316 스테인리스강의 입계부식에 미치는 열사이클과 응력의 영향)

  • Jung, Byong-Ho;Kim, Moo-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.709-715
    • /
    • 2006
  • The effects of thermal cycle condition and applied stress on the intergranular corrosion in austenitic 316 type stainless steels were investigated. Specimens were solution-treated at 1100$^{\circ}C$ for one hour and then sensitized in the temperature range of $500{\sim}800^{\circ}C$ by holding $2{\sim}300s$ with a various applied stresses of $0{\sim}8kg/mm^2$. Degree of sensitization. DOS %, was measured through polarization curve by electrochemical DL-EPR test. Microstructural observations were also conducted DOS % increased with an increase of sensitization temperature and/or holding time. Increase of applied stress resulted in increase of DOS % and more corroded surface because of acceleration of intergranular corrosion and fine grain size due to the stress. Cr depleted zone near grain boundary was observed. The amount of depletion was profounded with an increase of sensitization temperature, holding time and applied stress. $M_{23}C_6$ carbides were precipitated discontinuously at grain boundary. However, its amount was relatively small in the thermal cycle condition of 800$^{\circ}C$, 300sec and 4kg/mm$^2$.

FEM Analysis on Temperature Distribution and Thermal Stress of a Brake Drum for Large Commercial Vehicle (대형 상용차용 브레이크 드럼의 온도 분포 및 열응력에 관한 유한요소 해석)

  • Kim, Ho-Kyung;Lee, Young-In;Joo, Se-Min
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.7-13
    • /
    • 2006
  • A transient heat transfer and thermal stress analysis for a brake drum of commercial vehicles have been performed by ANSYS code in the cases of single braking and the repeated braking condition. The temperature and thermal stress distributions in the brake drum under various braking conditions were obtained using a two-dimensional axisymmetric model. In case of deceleration of 0.3G with an initial vehicle speed of 60km/h, the maximum temperature in the drum was $87.6^{\circ}C$ after braking application. The maximum stress of 78.7MPa in the drum occurred at the intersection between the flange and hat under a condition in which repeated 15 cycles braking with an initial vehicle speed of 60km/h and a deceleration of 0.3G is applied to according to KS R1129. The maximum stress value is much lower than the yield strength of drum material(FC250).

On the Thermal Stress and Residual Stress Distributions in a Aluminum Alloy Plate due to Resistance Spot Welding (알루미늄합금(合金)의 저항용접(抵抗熔接)에 따른 열응력(熱應力) 및 잔류응력(殘留應力)의 해석(解析))

  • Zae-Geun,Kim;Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.2
    • /
    • pp.21-32
    • /
    • 1972
  • The problems of thermal stress and residual stress in resistance spot welding are studied from two standpoint namely, effect of temperature distributions and effect of the radius of free boundary. The radius of the region where the temperature distributions are occured is taken as a function of time after welding and as a finite size, 6 times of heated zone. The region of the radial stress distribution is treated as a function of time under Saint-Venant's principle and 6 or 12 times of originally heated zone. Thermal stresses and strains are obtained by analytic solution under constant mechanical properties and by the finite difference method for varing properties under temperature variation. From the computed results following conclusions are derived (1) For the engineering purpose, the region of temperature distribution and stress distribution can be treated as a finite region, $R=r_o=6r_e$ (2) If the maximum temperature of the aluminum alloy plate is less than $500^{\circ}F$, thermal stresses and strains can be obtained with constant mechanical properties. (3) The residual stresses and strains will be remained in welds and its vicinity.

  • PDF