• Title/Summary/Keyword: Thermal storage system

Search Result 652, Processing Time 0.026 seconds

Recent Progress in Air Conditioning and Refrigeration Research -A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2000 and 2001- (공기조화, 냉동 분야의 최근 연구 동향 -2000년 및 2001년 학회지 논문에 대한 종합적 고찰 -)

  • 강신형;한화택;조금남;이승복;조형희;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1102-1139
    • /
    • 2002
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2000 and 2001 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD technologies were widely applied for developing facilities and their systems. (2) Most of papers related with heat transfer analysis and heat exchanger shows dealt with convection, evaporation, and channel flow for the design application of heat exchanger. The numerical heat transfer simulation studies have been peformed and reported to show heat transfer characteristics. Experimental as well as numerical studies on heat exchanger were reported, while not many papers are available for the system analysis including heat exchanger. (3) A review of the recent studies on heat pump system shows that performance analysis and control of heat pump have been peformed by various simulations and experiments. The research papers on multi-type heat pump system increased significantly. The studies on heat pipe have been examined experimently for change of working characteristics and strut lure. Research on the phase change has been carried out steadily and operation strategies of encapsulated ice storage tank are reported experimentally in several papers. (4) A review of recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. Evaporation and condensation heat transfer characteristics are investigated for tube shapes and new alternative refrigerants. Studies on components of refrigeration/air conditioning system are carried to examine efficiency for various compressors and performance of new expansion devices. In addition to thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out, however research works on two-phase flow seemed to be insufficient. (5) A review of the recent studies on absorption cooling system indicates that heat and mass transfer phenomena have been investigated to improve absorber performance. Various experimental data have been presented and several simulation models have been proposed. A review of the recent studies on duct and ventilation shows that ventilation indices have been proposed to quantify the ventilation performance in buildings and tunnels. Main efforts have been focused on the applications of ventilation effectiveness in practice, either numerically using computational fluid dynamics or experimentally using tracer gas techniques. (6) Based on a review of recent studies on indoor thermal environment and building service systems, research issues have mainly focused on many innovative ideas such as underfloor air-conditioning system, personal environmental modules, radiant floor cooling and etc. Also, the new approaches for minimizing energy consumption as well as improving indoor environmental conditions through predictive control of HVAC systems, various activities of building energy management and cost-benefit analysis for economic evaluation were highlighted.

Emission Characteristics of Odorous Sulfur Gases from Food Types: A Case Study on Boiled Egg, Milk, Canned Meat, and Strawberry (음식물의 악취 황화합물 발생특성 조사: 계란, 우유, 고기통조림, 딸기에 대한 사례 연구)

  • Kim, Bo-Won;Ahn, Jeong-Hyeon;Kim, Ki-Hyun;Jo, Sang-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.615-624
    • /
    • 2013
  • In this study, the emission patterns of reduced sulfur compounds (RSC) were investigated using four different types of food samples (boiled egg, milk, canned meat and strawberry) between fresh and decaying stages. To this end, the concentrations of RSCs were measured at storage days of 0, 1, 3, 6, and 9 under room temperature. Four sulfur compounds ($H_2S$, $CH_3SH$, DMS and DMDS) were selected as target compounds along with two reference compounds ($CS_2$ and $SO_2$). Their concentrations were quantified using GC-PFPD equipped with thermal desorption (TD) system. The boiled egg showed the highest concentration of $H_2S$ (3,655 ppb) at D-1, while $CH_3SH$ reached its maximum value of 64.4~78.5 ppb after 3 days. In milk samples, concentration of $CH_3SH$, DMS, and DMDS went up to 487, 16.3, and 578 ppb, respectively with the progress of decay (D-9). In case of canned meat, concentration of $H_2S$ and $CH_3SH$ peaked in the beginning (D-0) such as 345 and 66.6 ppb. In case of strawberry, $CH_3SH$ and DMDS showed the maximum concentrations 135 and 50.5 ppb at D-1, respectively. The olfactometry dilution-to-threshold (D/T) ratio by air dilution sensory (ADS) test showed similar patterns when sum of odor intensity (SOI) was derived via conversion of odorant concentration data. The results of this study confirm that the time of strong RSC emissions is distinguished for each food type between fresh (e.g., strawberries) and decaying conditions (e.g., milk).

Accelerated Degradation Stress of High Power Phosphor Converted LED Package (형광체 변환 고출력 백색 LED 패키지의 가속 열화 스트레스)

  • Chan, Sung-Il;Jang, Joong-Soon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.19-26
    • /
    • 2010
  • We found that saturated water vapor pressure is the most dominant stress factor for the degradation phenomenon in the package for high-power phosphor-converted white light emitting diode (high power LED). Also, we proved that saturated water vapor pressure is effective acceleration stress of LED package degradation from an acceleration life test. Test conditions were $121^{\circ}C$, 100% R.H., and max. 168 h storage with and without 350 mA. The accelerating tests in both conditions cause optical power loss, reduction of spectrum intensity, device leakage current, and thermal resistance in the package. Also, dark brown color and pore induced by hygro-mechanical stress partially contribute to the degradation of LED package. From these results, we have known that the saturated water vapor pressure stress is adequate as the acceleration stress for shortening life test time of LED packages.

Pressure Drop and Catalytic Dehydrogenation of NaBH4 Solution Across Pin Fin Structures in a Microchannel Reactor (마이크로 Pin Fin 화학반응기에서 수소화붕소나트륨 수용액의 압력강하 및 탈수소 화학반응 연구)

  • Jung, Ki Moon;Choi, Seok Hyun;Lee, Hee Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.381-387
    • /
    • 2017
  • Dehydrogenation from the hydrolysis of a sodium borohydride ($NaBH_4$) solution has been of interest owing to its high theoretical hydrogen storage capacity (10.8 wt.%) and potentially safe operation. An experimental study has been performed on the catalytic reaction rate and pressure drop of a $NaBH_4$ solution over both a single microchannel with a hydraulic diameter of $300{\mu}m$ and a staggered array of micro pin fins in the microchannel with hydraulic diameter of $50{\mu}m$. The catalytic reaction rates and pressure drops were obtained under Reynolds numbers from 1 to 60 and solution concentrations from 5 to 20 wt.%. Moreover, reacting flows were visualized using a high-speed camera with a macro zoom lens. As a result, both the amount of hydrogenation and pressure drop are 2.45 times and 1.5 times larger in a pin fin microchannel array than in a single microchannel, respectively.

Numerical Simulation on the Behavior of Air Cloud Discharging into a Water Pool (수조로 방출되는 기포 거동에 대한 수치해석)

  • 김환열;김영인;배윤영;송진호;김희동
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.237-246
    • /
    • 2002
  • If the safety depressurization system of APR-1400, the Korean next generation reactor, is in operation, water, air and steam are successively discharging into a in-containment refueling water storage tank through spargers. Among the phenomena occurring during the discharging processes, the air bubble clouds produce a low-frequency and high-amplitude oscillatory loading, which may result in the most significant damages to the submerged structures if the oscillation frequency is the same or close to the natural frequency of the structures. The involved phenomena are so complicated that most of the prediction of frequency and pressure loads has been resorted to experimental work and computational approach has been precluded. This study deals with a numerical simulation on the behavior of air bubble clouds discharging into a water pool through a sparger, by using a commercial thermal hydraulic analysis code, FLUENT, version 4.5. Among the multiphase flow models, the VOF (Volume Of Fluid) model was selected to simulate the water, air and steam flows. A satisfactory result was obtained comparing the analysis results with the ABB-Atom test results which had been performed for the development of sparser.

Development of a Flow Analysis Code Using an Unstructured Grid with the Cell-Centered Method

  • Myong, Hyon-Kook;Kim, Jong-Tae
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2218-2229
    • /
    • 2006
  • A conservative finite-volume numerical method for unstructured grids with the cell-centered method has been developed for computing flow and heat transfer by combining the attractive features of the existing pressure-based procedures with the advances made in unstructured grid techniques. This method uses an integral form of governing equations for arbitrary convex polyhedra. Care is taken in the discretization and solution procedure to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. For both convective and diffusive fluxes the forms superior to both accuracy and stability are particularly adopted and formulated through a systematic study on the existing approximation ones. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are computed by using a linear reconstruction based on the divergence theorem. Momentum interpolation is used to prevent the pressure checkerboarding and a segregated solution strategy is adopted to minimize the storage requirements with the pressure-velocity coupling by the SIMPLE algorithm. An algebraic solver using iterative preconditioned conjugate gradient method is used for the solution of linearized equations. The flow analysis code (PowerCFD) developed by the present method is evaluated for its application to several 2-D structured-mesh benchmark problems using a variety of unstructured quadrilateral and triangular meshes. The present flow analysis code by using unstructured grids with the cell-centered method clearly demonstrate the same accuracy and robustness as that for a typical structured mesh.

Design and manufacture of HTS current lead for 10kJ SMES (10kJ SMES용 고온초전도 전류리드의 설계 및 제작)

  • Park, Hae-Yong;Kim, Kwang-Min;Kim, Dae-Won;Kim, A-Rong;Park, Min-Won;Yu, In-Keun;Kim, Seok-Ho;Sim, Ki-Deok;Sohn, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.599_600
    • /
    • 2009
  • In superconducting magnetic energy storage (SMES) systems, the current leads are usually divided into two parts. Normal metals like brass or copper are often used in the first part from the room temperature to the 1st stage of the cryocooler. Their dimensions were decided to minimize the conduction heat penetration and Ohm's heat generation. The second part down to the cryogenic coil is made of high temperature superconductor (HTS). HTS current leads can reduce the conductive heat penetration because they have poor thermal conductivity and generate no Ohm's heat generation. The brass current lead and the HTS current lead were designed and fabricated for application to the 10kJ class SMES system. The HTS current lead is 300A class. The HTS current lead was stacked with 2 HTS layers using the $Bi_2Sr_2Ca_2Cu_3O_x$ (BSCCO)/Ag. In this paper, we introduce the design procedure of the current leads and discuss the test results of the current leads.

  • PDF

Safety Profile Assessment and Identification of Volatile Compounds of Krill Eupausia superba Oil and Residues Using Different Extraction Methods

  • Haque, A.S.M. Tanbirul;Kim, Seon-Bong;Lee, Yang-Bong;Chun, Byung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.159-165
    • /
    • 2014
  • In this study, Krill Eupausia superba oil was extracted using different solvents and supercritical carbon dioxide (SC-$CO_2$). During SC-$CO_2$ extraction, the pressure was set at 40 MPa and temperatures ranged from $40^{\circ}C$ to $55^{\circ}C$. We examined the differences in volatile compounds and safety profiles among extraction methods. Volatile compounds were determined using the thermal desorption system integrated with gas chromatography-mass spectrometry (GC-MS). Heavy metal content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). According to our results 10 volatile compounds were identified in krill sample. After SC-$CO_2$ extraction of oil, the concentrations of volatile compounds decreased, but increased after solvent extraction. In krill, heavy metal concentrations remained within the permissible limit. Moreover, Zn and Fe which have health benefits were detected at high concentrations. During a 90 days storage period at different temperatures, microbial activity was found to be lowest in SC-$CO_2$ extracted residues. Thus, the quality of krill oil and the residues obtained using SC-$CO_2$ extraction was higher and the oil was safer than those obtained using conventional solvent extraction. These results can be applied to the food industry to maintain high quality krill products.

Development of 80kW Bi-directional Hybrid-SiC Boost-Buck Converter using Droop Control in DC Nano-grid (DC 나노그리드에서 Droop제어를 적용한 80kW급 양방향 하이브리드-SiC 부스트-벅 컨버터 개발)

  • Kim, Yeon-Woo;Kwon, Min-Ho;Park, Sung-Youl;Kim, Min-Kook;Yang, Dae-Ki;Choi, Se-Wan;Oh, Seong-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.360-368
    • /
    • 2017
  • This paper proposes the 80-kW high-efficiency bidirectional hybrid SiC boost/buck converter using droop control for DC nano-grid. The proposed converter consists of four 20-kW modules to achieve fault tolerance, ease of thermal management, and reduced component stress. Each module is constructed as a cascaded structure of the two basic bi-directional converters, namely, interleaved boost and buck converters. A six-pack hybrid SiC intelligent power module (IPM) suitable for the proposed cascaded structure is adopted for high-efficiency and compactness. The proposed converter with hybrid switching method reduces the switching loss by minimizing switching of insulated gate bipolar transistor (IGBT). Each module control achieves smooth transfer from buck to boost operation and vice versa, since current controller switchover is not necessary. Furthermore, the proposed parallel control using DC droop with secondary control, enhances the current sharing accuracy while well regulating the DC bus voltage. A 20-kW prototype of the proposed converter has been developed and verified with experiments and indicates a 99.3% maximum efficiency and 98.8% rated efficiency.

Cryoprotective Effect and Mechanism of Corn Starch Enzyme Hydrolysates on Fish Protein 2. Cryoprotective Mechanism of Corn Starch Enzyme Hydrolysates on Fish Protein (전분가수분해물의 어육단백질 동결변성 방지효과 및 작용기구 2. 옥수수전분가수분해물의 어육단백질에 대한 동결변성 방지 기구)

  • LEE Kang-HO;JUNG Byung-Chun;HONG Byung-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.829-834
    • /
    • 1998
  • It is well known that the native conformation of many proteins can be stabilized by carbohydrates or polyalcohols. However, the mechanism of the stabilization still remains unclear. In the present studies, to characterize the cryoprotective mechanism of corn starch enzyme hydrolysates on fish protin, solubility of hydrolysates, thermal behavior of hydrolysates and actomyosin solution, and enzyme kinetics in frozen system were investigated. The solubility of the hydrolysates increased with the increase in D.E. value. The $T_g^{'}$ of the hydrolysates were linearly correlated with D.E. value and the T-g value of the hydrolysates (D.E. 5,10,15,20) were reported to be $-7.2^{\circ}C\;-8.8^{\circ}C\;-11.9^{\circ}C$, and $-14.3^{\circ}C$, respectively. The results of enzyme experiments showed that the higher the D.E. value, the higher was the rate of reaction in frozen storage ($-12^{\circ}C$). It is found to support the cryostabilization mechanism that the hydrolysats act to enmesh the protein in a glass state where all deteriorative processes are greatly slowed down.

  • PDF