• Title/Summary/Keyword: Thermal storage system

Search Result 650, Processing Time 0.033 seconds

Accelerated Degradation Stress of High Power Phosphor Converted LED Package (형광체 변환 고출력 백색 LED 패키지의 가속 열화 스트레스)

  • Chan, Sung-Il;Jang, Joong-Soon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.19-26
    • /
    • 2010
  • We found that saturated water vapor pressure is the most dominant stress factor for the degradation phenomenon in the package for high-power phosphor-converted white light emitting diode (high power LED). Also, we proved that saturated water vapor pressure is effective acceleration stress of LED package degradation from an acceleration life test. Test conditions were $121^{\circ}C$, 100% R.H., and max. 168 h storage with and without 350 mA. The accelerating tests in both conditions cause optical power loss, reduction of spectrum intensity, device leakage current, and thermal resistance in the package. Also, dark brown color and pore induced by hygro-mechanical stress partially contribute to the degradation of LED package. From these results, we have known that the saturated water vapor pressure stress is adequate as the acceleration stress for shortening life test time of LED packages.

Pressure Drop and Catalytic Dehydrogenation of NaBH4 Solution Across Pin Fin Structures in a Microchannel Reactor (마이크로 Pin Fin 화학반응기에서 수소화붕소나트륨 수용액의 압력강하 및 탈수소 화학반응 연구)

  • Jung, Ki Moon;Choi, Seok Hyun;Lee, Hee Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.381-387
    • /
    • 2017
  • Dehydrogenation from the hydrolysis of a sodium borohydride ($NaBH_4$) solution has been of interest owing to its high theoretical hydrogen storage capacity (10.8 wt.%) and potentially safe operation. An experimental study has been performed on the catalytic reaction rate and pressure drop of a $NaBH_4$ solution over both a single microchannel with a hydraulic diameter of $300{\mu}m$ and a staggered array of micro pin fins in the microchannel with hydraulic diameter of $50{\mu}m$. The catalytic reaction rates and pressure drops were obtained under Reynolds numbers from 1 to 60 and solution concentrations from 5 to 20 wt.%. Moreover, reacting flows were visualized using a high-speed camera with a macro zoom lens. As a result, both the amount of hydrogenation and pressure drop are 2.45 times and 1.5 times larger in a pin fin microchannel array than in a single microchannel, respectively.

Numerical Simulation on the Behavior of Air Cloud Discharging into a Water Pool (수조로 방출되는 기포 거동에 대한 수치해석)

  • 김환열;김영인;배윤영;송진호;김희동
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.237-246
    • /
    • 2002
  • If the safety depressurization system of APR-1400, the Korean next generation reactor, is in operation, water, air and steam are successively discharging into a in-containment refueling water storage tank through spargers. Among the phenomena occurring during the discharging processes, the air bubble clouds produce a low-frequency and high-amplitude oscillatory loading, which may result in the most significant damages to the submerged structures if the oscillation frequency is the same or close to the natural frequency of the structures. The involved phenomena are so complicated that most of the prediction of frequency and pressure loads has been resorted to experimental work and computational approach has been precluded. This study deals with a numerical simulation on the behavior of air bubble clouds discharging into a water pool through a sparger, by using a commercial thermal hydraulic analysis code, FLUENT, version 4.5. Among the multiphase flow models, the VOF (Volume Of Fluid) model was selected to simulate the water, air and steam flows. A satisfactory result was obtained comparing the analysis results with the ABB-Atom test results which had been performed for the development of sparser.

Development of a Flow Analysis Code Using an Unstructured Grid with the Cell-Centered Method

  • Myong, Hyon-Kook;Kim, Jong-Tae
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2218-2229
    • /
    • 2006
  • A conservative finite-volume numerical method for unstructured grids with the cell-centered method has been developed for computing flow and heat transfer by combining the attractive features of the existing pressure-based procedures with the advances made in unstructured grid techniques. This method uses an integral form of governing equations for arbitrary convex polyhedra. Care is taken in the discretization and solution procedure to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. For both convective and diffusive fluxes the forms superior to both accuracy and stability are particularly adopted and formulated through a systematic study on the existing approximation ones. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are computed by using a linear reconstruction based on the divergence theorem. Momentum interpolation is used to prevent the pressure checkerboarding and a segregated solution strategy is adopted to minimize the storage requirements with the pressure-velocity coupling by the SIMPLE algorithm. An algebraic solver using iterative preconditioned conjugate gradient method is used for the solution of linearized equations. The flow analysis code (PowerCFD) developed by the present method is evaluated for its application to several 2-D structured-mesh benchmark problems using a variety of unstructured quadrilateral and triangular meshes. The present flow analysis code by using unstructured grids with the cell-centered method clearly demonstrate the same accuracy and robustness as that for a typical structured mesh.

Design and manufacture of HTS current lead for 10kJ SMES (10kJ SMES용 고온초전도 전류리드의 설계 및 제작)

  • Park, Hae-Yong;Kim, Kwang-Min;Kim, Dae-Won;Kim, A-Rong;Park, Min-Won;Yu, In-Keun;Kim, Seok-Ho;Sim, Ki-Deok;Sohn, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.599_600
    • /
    • 2009
  • In superconducting magnetic energy storage (SMES) systems, the current leads are usually divided into two parts. Normal metals like brass or copper are often used in the first part from the room temperature to the 1st stage of the cryocooler. Their dimensions were decided to minimize the conduction heat penetration and Ohm's heat generation. The second part down to the cryogenic coil is made of high temperature superconductor (HTS). HTS current leads can reduce the conductive heat penetration because they have poor thermal conductivity and generate no Ohm's heat generation. The brass current lead and the HTS current lead were designed and fabricated for application to the 10kJ class SMES system. The HTS current lead is 300A class. The HTS current lead was stacked with 2 HTS layers using the $Bi_2Sr_2Ca_2Cu_3O_x$ (BSCCO)/Ag. In this paper, we introduce the design procedure of the current leads and discuss the test results of the current leads.

  • PDF

Safety Profile Assessment and Identification of Volatile Compounds of Krill Eupausia superba Oil and Residues Using Different Extraction Methods

  • Haque, A.S.M. Tanbirul;Kim, Seon-Bong;Lee, Yang-Bong;Chun, Byung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.159-165
    • /
    • 2014
  • In this study, Krill Eupausia superba oil was extracted using different solvents and supercritical carbon dioxide (SC-$CO_2$). During SC-$CO_2$ extraction, the pressure was set at 40 MPa and temperatures ranged from $40^{\circ}C$ to $55^{\circ}C$. We examined the differences in volatile compounds and safety profiles among extraction methods. Volatile compounds were determined using the thermal desorption system integrated with gas chromatography-mass spectrometry (GC-MS). Heavy metal content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). According to our results 10 volatile compounds were identified in krill sample. After SC-$CO_2$ extraction of oil, the concentrations of volatile compounds decreased, but increased after solvent extraction. In krill, heavy metal concentrations remained within the permissible limit. Moreover, Zn and Fe which have health benefits were detected at high concentrations. During a 90 days storage period at different temperatures, microbial activity was found to be lowest in SC-$CO_2$ extracted residues. Thus, the quality of krill oil and the residues obtained using SC-$CO_2$ extraction was higher and the oil was safer than those obtained using conventional solvent extraction. These results can be applied to the food industry to maintain high quality krill products.

Development of 80kW Bi-directional Hybrid-SiC Boost-Buck Converter using Droop Control in DC Nano-grid (DC 나노그리드에서 Droop제어를 적용한 80kW급 양방향 하이브리드-SiC 부스트-벅 컨버터 개발)

  • Kim, Yeon-Woo;Kwon, Min-Ho;Park, Sung-Youl;Kim, Min-Kook;Yang, Dae-Ki;Choi, Se-Wan;Oh, Seong-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.360-368
    • /
    • 2017
  • This paper proposes the 80-kW high-efficiency bidirectional hybrid SiC boost/buck converter using droop control for DC nano-grid. The proposed converter consists of four 20-kW modules to achieve fault tolerance, ease of thermal management, and reduced component stress. Each module is constructed as a cascaded structure of the two basic bi-directional converters, namely, interleaved boost and buck converters. A six-pack hybrid SiC intelligent power module (IPM) suitable for the proposed cascaded structure is adopted for high-efficiency and compactness. The proposed converter with hybrid switching method reduces the switching loss by minimizing switching of insulated gate bipolar transistor (IGBT). Each module control achieves smooth transfer from buck to boost operation and vice versa, since current controller switchover is not necessary. Furthermore, the proposed parallel control using DC droop with secondary control, enhances the current sharing accuracy while well regulating the DC bus voltage. A 20-kW prototype of the proposed converter has been developed and verified with experiments and indicates a 99.3% maximum efficiency and 98.8% rated efficiency.

Cryoprotective Effect and Mechanism of Corn Starch Enzyme Hydrolysates on Fish Protein 2. Cryoprotective Mechanism of Corn Starch Enzyme Hydrolysates on Fish Protein (전분가수분해물의 어육단백질 동결변성 방지효과 및 작용기구 2. 옥수수전분가수분해물의 어육단백질에 대한 동결변성 방지 기구)

  • LEE Kang-HO;JUNG Byung-Chun;HONG Byung-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.829-834
    • /
    • 1998
  • It is well known that the native conformation of many proteins can be stabilized by carbohydrates or polyalcohols. However, the mechanism of the stabilization still remains unclear. In the present studies, to characterize the cryoprotective mechanism of corn starch enzyme hydrolysates on fish protin, solubility of hydrolysates, thermal behavior of hydrolysates and actomyosin solution, and enzyme kinetics in frozen system were investigated. The solubility of the hydrolysates increased with the increase in D.E. value. The $T_g^{'}$ of the hydrolysates were linearly correlated with D.E. value and the T-g value of the hydrolysates (D.E. 5,10,15,20) were reported to be $-7.2^{\circ}C\;-8.8^{\circ}C\;-11.9^{\circ}C$, and $-14.3^{\circ}C$, respectively. The results of enzyme experiments showed that the higher the D.E. value, the higher was the rate of reaction in frozen storage ($-12^{\circ}C$). It is found to support the cryostabilization mechanism that the hydrolysats act to enmesh the protein in a glass state where all deteriorative processes are greatly slowed down.

  • PDF

Physical Properties of Grain (곡물(糓物)의 물리적(物理的) 특성(特性)에 관(關)한 연구(硏究))

  • Kim, Man Soo;Koh, Hak Kyun
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 1981
  • The physical properties of grain are very important for the design of handling, sorting, processing, and storage system. On the physical properties of grain, volume, bulk density, true density, specific gravity, and porosity arc the major factors affecting the thermal properties of grain. This study was conducted to determine experimentally the above physical properties of rough rice (3 Japonica-type, 3 Indica-type) and barley (covered, naked) as a function of moisture content ranged from about 10% to 25% (w.b). The results of this study are summarized as follows; 1. The volume of grain kernel increased with moisture content for both rice and barley. The volume of those grain kernel was in the range of $2.2068{\times}10^{-8}{\sim}3.3960{\times}10^{-8}m^3$ at the moisture content of 14%. 2. The bulk density of rice increased linearly with moisture content for Japonica-type rough rice and quadratically for Indica-type rough rice, but the bulk density of barley decreased linearly with moisture content. The bulk density of the grain was in the range of 501.14~689.13kg/$m^3$ at the moisture content of 14%. 3. The true density of whole grain decreased linearly with moisture content, and was in the range of 1019.49~1139.75kg/$m^3$ at the moisture content of 14%. 4. The porosity of rice decreased linearly with moisture content for Japonica-type rough rice and quadratically for Indica-type rough rice, but the porosity of barley increased linearly with moisture content. The porosity of the grain was in the range of 39.51~50.83% at the moisture content of 14%. 5. The regression equations of the physical properties such as volume, bulk density, true density, and porosity of the grain were determined as a function of moisture content.

  • PDF

A Study on the Heat Storage System for Chemical Heat Pump Using Inorganic Hydrates (II) -Numerical Analysis of Heat Transfer in CaO Hydration Packed Bed- (화학열펌프에 있어서의 무기수화물계 축열시스템에 관한 연구(II) -CaO 수화반응층의 전열해석-)

  • Park, Young-Hae;Chung, Soo-Yull;Kim, Jong-Shik
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.518-529
    • /
    • 1996
  • To develope chemical heat pump using available energy sources such as solar heat and many kinds of waste thermal energy we have studied the enhancement effect of inserted fins in cylindical packed bed reactor. Two dimensionnal(radial and circumferential) partial differential eqaetions, concerning heat and masstransfer in CaO packed bad, are solved numerically to describe the characteristics of the reaction of fins inserted reactor and heat transfer. The results obtained by numerical analysis about two dimensional profiles of temperature and conversion in the reactant in the packed bed and exothermic heat amount released from the reactor are follows; -. The insertion of fins in reactor can redue the reaction completion time by half. -. The rate of thermochemical reaction depends of the temperature and concentration and it is also governed by the boundary conditions and heat transfer rate in the particle packed bed.

  • PDF