• Title/Summary/Keyword: Thermal spray process

Search Result 198, Processing Time 0.035 seconds

Effect of Vacuum Heat Treatment on the Properties in Thermal Sprayed Ceramics Coating (세라믹스 용사 코팅 특성에 미치는 진공열처리의 영향)

  • Lee, J.I.;Ur, S.C.;Lee, Y.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.2
    • /
    • pp.98-102
    • /
    • 2000
  • The effect of vacuum heat treatment in the thermal sprayed ceramics coating on a capstan by either high velocity oxygen fuel(HVOF) or plasma thermal spray process was investigated. The coating materials applied on the capstan were tungsten and chrome carbides. In order to characterize the interface between coating layer and bare materials, hardness, adhesion strength, X-ray diffraction(XRD) and microstructural analysis are conducted. The adhesion strength of the carbide coated materials by HVOF process is over 500MPa compared to those of plasma coating process is 230MPa. In case of the carbide coated materials by HVOF process, the adhesion strength is increased to 15MPa and the porosity is reduced under 5% by vacuum heat treatment for 5 hrs at $1000^{\circ}C$. The XRD results reveal that the increasement is believed due to the phase stabilization of metastable $Cr_3C_2$ phase to stable $Cr_{23}C_6$ phase.

  • PDF

Thermal and Mechanical Evaluation of Environmental Barrier Coatings for SiCf-SiC Composites (SiCf-SiC 복합재료의 내환경 코팅 및 열, 기계적 내구성 평가)

  • Chae, Yeon-Hwa;Moon, Heung Soo;Kim, Seyoung;Woo, Sang Kuk;Park, Ji-Yeon;Lee, Kee Sung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.84-93
    • /
    • 2017
  • This study investigates thermal and mechanical characterization of environmental barrier coating on the $SiC_f-SiC$ composites. The spherical environmental barrier coating (EBC) powders are prepared using a spray drying process for flowing easily during coating process. The powders consisting of mullite and 12 wt% of Ytterbium silicate are air plasma sprayed on the Si bondcoat on the LSI SiC fiber reinforced SiC composite substrate for protecting the composites from oxidation and water vapor reaction. We vary the process parameter of spray distance during air plasma spray of powders, 100, 120 and 140 mm. After that, we performed the thermal durability tests by thermal annealing test at $1100^{\circ}C$ for 100hr and thermal shock test from $1200^{\circ}C$ for 3000 cycles. As a result, the interface delamination of EBC never occur during thermal durability tests while stable cracks are prominent on the coating layer. The crack density and crack length depend on the spray distance during coating. The post indentation test indicates thermal tests influence on the indentation load-displacement mechanical behavior.

Effect of cold-spray deposition on deformation of aluminum alloy substrate (초음속 저온분사법에 의한 알루미늄 분말 적층에서 얇은 모재에 발생하는 변형에 대한 연구)

  • Lee Jae-Chul;Chun Doo-Man;Kim Sung-Geun;Ahn Sung-Hoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.99-100
    • /
    • 2006
  • Cold gas dynamic spray or cold-spray is a deposition process, which causes deformation of a thin substrate. The deformation is usually convex to the deposited side. In this research, the main cause of the deformation was investigated using 6061-T6 aluminum alloy. The effects or anisotropic coefficient or thermal expansion (CTE) or the deposited layer by cold-spray and residual stress were studied by experiments and finite element analysis. The Hole Drilling method was applied to measure residual stress in the cold-spray layer and substrate. The data obtained by the experiments were used for the analysis of substrate deformation. From the result of the analysis, it was concluded that compressive residual stress was the main reason of substrate deformation while CTE had little effect.

  • PDF

Thermal History Analysis and Solid Fraction Prediction of Gas-Atomized Alloy Droplets during Spray Forming (분무성형 공정에서 분무액적의 열이력 해석 및 고상분율 예측)

  • 이언식
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.85-94
    • /
    • 1994
  • In order to predict droplet velocity and temperature profiles and fractional solidification with flight distance during spray forming, the Newtonian heat transfer formulation has been coupled with the classical heterogeneous nucleation and the specific solidification process. It has been demonstrated that the thermal profile of the droplet in flight is significantly affected by process parameters such as droplet size, initial gas velocity, undercooling. As the droplet size and/or the initial gas velocity increase, the onset and completion of solidification are shifted to greater flight distances and the solidification process also extends over a wider range of flight distances. The amounts of solid fractions formed during recoalescence, segregated solidification and eutectic solidification are insensitive to droplet size and initial gas velocity whereas those are strongly affected by the degree of undercooling. There are good linear relations between the undercooling and the corresponding solid fractions generated during recoalesced, segregated and eutectic stages.

  • PDF

Experimental Investigation and Modeling of the Specific Enthalpy Distribution in a Spray Cone

  • Ellendt, N.;Uhlenwinkel, V.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.58-59
    • /
    • 2006
  • In Spray Forming, specific enthalpy is a key parameter in the deposition process as it influences the thermal condition of the impinging droplets as well as that of the deposit surface. An empirical model for the distribution of specific enthalpy in the spray cone was developed as an easy to handle alternative to numerical models with which the descriptive partial differential equations are solved numerically. The model results were compared with the experimental data to validate its applicability.

  • PDF

Numerical Investigation of Factors affecting Photoresist Stripping Process on the ITO Surface using the Spray Method (노즐 분사 방식의 ITO 표면 포토레지스트 박리과정 요인의 수치해석)

  • Kim, Joon Hyun;Lee, Joon Hyuck;Kang, Tae Seong;Joo, Gi-Tae;Kim, Young Sung;Jeong, Byung Hyun;Lee, Dae Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.158-165
    • /
    • 2017
  • This study investigated spraying factors applicable to stripper usage. Cyclodextrine, as environment-friendly material, was included in the stripper composition. An efficient spray technology was applied for the Photoresist strip. For industrial applications, stripping requires a temperature below $50^{\circ}C$, a strip time within 50 s, and chemically stable activation. Spraying factors were organized considering many conditions-orifice diameter, working pressure (inlet speed), spray distance, and spray angle. For commercial practicability, the flow rate was limited to 3 L/min. The nozzle parameters were nozzle orifice diameter of 1.8-2.2 mm, spray distance of 40-60 mm, and injection speed of 0.7-1.2 m/s. Through the thermal spray movement of the fluid, the thermal boundary layer for a chemical reaction just above the ITO-glass surface and momentum region for sufficient agitation (above 4 m/s) was achieved.

A Study On Properties and Thermal Decomposition of W-Co Salt Powders Synthesized by Spray Drying (분무 건조된 W-Co 복합염의 열분해 및 분말 특성에 관한 연구)

  • Gwon, Dae-Hwan;An, In-Seop;Ha, Guk-Hyeon;Kim, Byeong-Gi;Kim, Yu-Yeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.953-959
    • /
    • 2001
  • Homogeneous spherical W-Co salt powders were made by spray drying of aqueous solution of ammonium $metatungstate(NH_4)_6(H_2W_{12}O_{40}){\cdot}4H_2O,\; AMT)$ and cobalt nitrate $hexahydrate(Co(NO_3)_2{\cdot}6H_2O)$. The thermal decomposition process of spray dried W-Co salt powders was studied by TG, XRD, SEM, TEM and FT-IR. Spray dried W-Co salt powders were calcined for 1 hour in the temperature from$ 350^{\circ}C$ to $800^{\circ}C$ in atmosphere of air. At the temperatures over $600^{\circ}C$, spherical $CoWO_4/WO_3$ composite oxide powders were obtained. The primary particle size of W/Co composite oxide powders increased with increasing thermal decomposition temperature due to the particle growth. The observed crystallite size by TEM was in the range of 60nm and that of $CoWO_4$ calculated by Scherrer's formula at $800^{\circ}C$ was smaller than 55nm. The crystallite site was identified by XRD and TEM.

  • PDF

Synthesis Of Nd2Fe14B Powders by Spray-Drying and Reduction-Diffusion Process (분무건조와 환원-확산 공정에 의한 Nd2Fe14B 분말의 합성)

  • 최철진;허민선;박병연;김성덕;하국현;김병기;박용호
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.436-442
    • /
    • 2003
  • The magnetic Nd-Fe-B powders were prepared by a thermochemical method, consisting of the processes of spray-drying, debinding, milling, H$_2$-reduction, Ca-reduction, and washing. The optimum process conditions were studied by microstructural and thermal analysis. The resultant Nd-Fe-B powder was spherical with the size of 1 ${\mu}{\textrm}{m}$. Effects of the process parameters of each step on the microstructure of the powders were investigated, and their magnetic properties were evaluated.