• Title/Summary/Keyword: Thermal resistivity

Search Result 509, Processing Time 0.032 seconds

Effect of Thermal Annealing on the Electrical Properties of In-Si-O/Ag/In-Si-O Multilayer

  • Yu, Jiao Long;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.201-203
    • /
    • 2016
  • Transparent conductive multilayers have been fabricated using transparent amorphous Si doped indium oxide (ISO) semiconductors and metallic Ag of ISO/Ag/ISO. The resistivity of a multilayer is dependent on the middle layer thickness of silver. The thickness of the Ag layer is fixed at 11 nm and takes into account cost and optical transmittance. As-deposited ISO/Ag (11 nm)/ISO multilayer shows a measured resistivity of 7.585×10−5 Ω cm. After a post annealing treatment of 400℃, the resistivity is reduced to 4.332×10−5 Ω cm. The reduction of resistivity should be explained that the mobility of the multilayer increased due to the optimized crystalline, meanwhile, the Hall concentration of the multilayer showed an obscure change because the carriers mainly come from the insert of the Ag layer.

Microstructure and electrical properties of high power laser thermal annealing on inkjet printed Ag films

  • Yoon, Yo-Han;Yi, Seol-Min;Yim, Jung-Ryoul;Lee, Ji-Hoon;Joo, Young-Chang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.36.2-36.2
    • /
    • 2009
  • In this work, the high power CW Nd:YAG laser has been used for thermal treatment of inkjet printed Ag films-involving eliminating organic additives (dispersant, binder, and organic solvent) of Ag ink and annealing Ag nanoparticles. By optimizing laser parameters, such as laser power and defocusing value, the laser energy can totally be converted to heat energy, which is used to thermal treatment of inkjet printed Ag films. This results in controlling the microstructures and the resistivity of films. We investigated the thermal diffusion mechanisms during laser annealing and the resulting microstructures. The impact of high power laser annealing on microstructures and electrical characteristic of inkjet printed Ag films is compared to those of the films annealed by a conventional furnace annealing. Focused ion beam (FIB) channeling image shows that the laser annealed Ag films have large columnar grains and dense structure (void free), while furnace annealed films have tiny grains and exhibit void formation. Due to these microstructural characteristics of laser annealed films, it has better electrical property (low resistivity) compared to furnace annealed samples.

  • PDF

Fabrication and Electrical, Thermal and Morphological Properties of Novel Carbon Nanofiber Web/Unsaturated Polyester Composites

  • Kim, Seong-Hwan;Kwon, Oh-Hyeong;Cho, Dong-Hwan
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.285-292
    • /
    • 2010
  • Novel unsaturated polyester composites with PAN-based nanofiber, stabilized PAN nanofiber, and carbonized nanofiber webs have been fabricated, respectively, and the effects of the nanofiber web content on their electrical resistivity, the thermal stability, dynamic storage modulus, and fracture surfaces were studied. The result demonstrated that the introduction of just one single layer (which is corresponding to 2 wt.%) of the carbonized nanofiber web to unsaturated polyester resin (UPE) could contribute to reducing markedly the electrical resistivity of the resin reflecting the percolation threshold, to improving the storage modulus, and to increasing the thermal stability above $350^{\circ}C$. The effect on decreasing the resistivity and increasing the modulus was the greatest at the carbonized PAN nanofiber web content of 8 wt.%, particularly showing that the storage modulus was increased about 257~283% in the measuring temperature range of $-25^{\circ}C$ to $50^{\circ}C$. The result also exhibited that the carbonized PAN nanofibers were distributed uniformly and compactly in the unsaturated polyester, connecting the matrix three-dimensionally through the thickness direction of each specimen. It seemed that such the fiber distribution played a role in reducing the electrical resistivity as well as in improving the dynamic storage modulus.

Temperature Dependent Behavior of Thermal and Electrical Contacts during Resistance Spot Welding

  • Kim, E.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • The thermal contact conductance at different temperatures and with different electrode forces and zinc coating morphology was measured by monitoring the infrared emissions from the one dimensionally simulated contact heat transfer experiments. The contact heat transfer coefficients were presented as a function of the harmonic mean temperature of the two contacting surfaces. Using these contact heat transfer coefficients and experimentally measured temperature profiles, the electrical contact resistivities both for the faying interface and electrode-workpiece interface were deduced from the numerical analyses of the one dimension simulation welding. It was found that the average value of the contact heat transfer coefficients for the material with zinc coating (coating weight from 0 g/$mm^2$to 100 g/$mm^2$) ranges from 0.05 W/$mm^2$$^{\circ}C$ to 2.0 W/$mm^2$$^{\circ}C$ in the temperature range above 5$0^{\circ}C$ harmonic mean temperature of the two contacting surfaces. The electrical contact resistivity deduced from the one dimension simulation welding and numerical analyses showed that the ratio of electrical contact resistivity at the laying interface to the electrical contact resistivity at the electrode interface is smaller than one far both bare steel and zinc coated steel.

  • PDF

A Study on Validation of Condition Monitering Method of Accelerated Thermal Aging CSPE (가속열화 된 CSPE 상태감시법의 유효성 연구)

  • Shin, Yong-Deok;Goo, Cheol-Soo;Kim, In-Yong;Lee, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1447-1448
    • /
    • 2011
  • The CSPE cables are used for three years in nuclear power plant. The accelerated thermal aging of chloro sulfonate polyethylene(CSPE) jacket of test cables were carried out for the period equal to 10, 20 and 30 years in air at 90 and $100^{\circ}C$, respectively. The electrical volume resistivity, density, XPS, FE-SEM, EDS and XRF of the accelerated thermal aging of CSPE were measured. The validation of condition monitering method of accelerated thermal aging CSPE was estimated by them. The best validation of condition monitoring method of accelerated aging CSPE is electrical volume resistivity because change thermal of the specimen showed distinction.

  • PDF

A Study on the Forsterite Porecelain as a High Frequency Insulator(III) (Microstrucrue, Thermal Expansion and Resistivity of the Forsterite Porcelain) (고주파용 절록재료로서의 Forsterite 자기에 관한 연구(III) (Forsterite 자기의 미구조와 열팽창, 비저항과의 관계))

  • 이은상;황성연
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.4
    • /
    • pp.324-332
    • /
    • 1983
  • In this studies resistivity thermal expansion and microstructure of the Forsterite Porcelain as a high frequency insulator were investigated. The body containing Zn-glass shows higher resistivity than any other body. The bodies containing K, Ba, Cd-glass respectively consist of fine crystals of mosaic type. The bodies containing Bi, Zn, Zr-glass repectively included more large crystals because of the grain growth and coherence of fine particles In the 4 series Forsterite containing excess MgO 0-6% the thermal coefficients of the bodies increased with the increasing of excess MgO and the bodies have conspicuously high thermal expansion coefficients when 15% excess $BaCO_3$ was added to. The resistivities of additive bodies of $BaCO_3$ 0, 5, 10% in Forsterite containg excess MgO 2% are higher than any other that of composition. Bacause the growing of Forsterite crystals was restrained with the increasing of excess MgO $BaCO_3$ their grain size became fine and their grain boundaries were decomposed and also the glass phase having high refractive inder was increased. The higher the firing temperature increased the more the process of crystal growing was progressed.

  • PDF

Electrical Properties and Microstructures in Ti Films Deposited by TFT dc Sputtering

  • Han, Chang-Suk;Jeon, Seung-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.207-211
    • /
    • 2016
  • Ti films were deposited on glass substrates under various preparation conditions in a chamber of two-facing-target type dc sputtering; after deposition, the electric resistivity values were measured using a conventional four-probe method. Crystallographic orientations and microstructures, including the texture and columnar structure, were also investigated for the Ti films. The morphological features, including the columnar structures and surface roughness, are well explained on the basis of Thornton's zone model. The electric resistivity and the thermal coefficient of the resistivity vary with the sputtering gas pressure. The minimum value of resistivity was around 0.4 Pa for both the $0.5{\mu}m$ and $3.0{\mu}m$ thick films; the apparent tendencies are almost the same for the two films, with a small difference in resistivity because of the different film thicknesses. The films deposited at high gas pressures show higher resistivities. The maximum of TCR is also around 0.4 Pa, which is the same as that obtained from the relationship between the resistivity and the gas pressure. The lattice spacing also decreases with increasing sputtering gas pressure for both the $0.5{\mu}m$ and $3.0{\mu}m$ thick films. Because they are strongly related to the sputtering gas pressures for Ti films that have a crystallographic anisotropy that is different from cubic symmetry, these changes are well explained on the basis of the film microstructures. It is shown that resistivity measurement can serve as a promising monitor for microstructures in sputtered Ti films.

Effect of Rapid Thermal Annealing on the Transparent Conduction and Heater Property of ZnO/Cu/ZnO Thin Films (RTA 후속 열처리에 따른 ZnO/Cu/ZnO 박막의 투명전극 및 발열체 특성 연구)

  • Yeon-Hak Lee;Daeil Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.115-120
    • /
    • 2023
  • ZnO/Cu/ZnO (ZCZ) thin film deposited on the glass substrate with DC and RF magnetron sputtering was rapid thermal annealed (RTA) and then effect of thermal temperature on the opto-electical and transparent heater properties of the films were considered. The visible transmittance and electrical resistivity are depends on the annealing temperature. The electrical resistivity decreased from 1.68 × 10-3 Ωcm to 1.18 × 10-3 Ωcm and the films annealed at 400℃ show a higher transmittance of 78.5%. In a heat radiation test, when a bias voltage of 20 V is applied to the ZCZ film annealed at 400℃, its steady state temperature is about 70.7℃. In a repetition test, the steady state temperature is reached within 15s for all of the bias voltages.

Effect of Particle Breakage on Compaction and Thermal Resistivity of Concrete-based Recycled Aggregates (콘크리트 재생 순환골재의 파쇄 효과에 따른 다짐 및 열저항 특성 연구)

  • Kang, Sungchul;Kim, Gyeonghun;Wi, Jihae;Ahn, Taebong;Lee, Dae-Soo;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.17-28
    • /
    • 2015
  • The strict regulations on eco-friendly construction and the significant reduction of natural aggregate resources have raised public concerns on the utilization of recycled aggregates for backfilling a power transmission pipeline trench. In this paper, the particle breakage of concrete-based recycled aggregates and river sand has been experimentally studied during the standard compaction test. The applied compaction energy does not significantly break the river sand particles down, and thus causes no change in the compaction curve, thermal resistivity, and particle gradation characteristics. On the other hand, considerable particle breakage was observed in case of the three recycled aggregates. Such particle breakage leads to enhancing compaction effort, reducing thermal resistivity, and changing particle gradation curve with finer particles that are broken during the first compaction. In addition, particle breakage is more dramatic in lower water contents because pore water may damp down the compaction energy.

Electrical properties of polyethylene composite films filled with nickel powder and short carbon fiber hybrid filler

  • Mironov, V.S.;Kim, Seong Yun;Park, Min
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.105-109
    • /
    • 2013
  • Effects of the amount of nickel powder (Ni) in Ni-carbon fiber (CF) hybrid filler systems on the conductivity(or resistivity) and thermal coefficient of resistance (TCR) of filled high density polyethylene were studied. Increases of the resistivity and TCR with increasing Ni concentration at a given hybrid filler content were observed. Using the fiber contact model, we showed that the main role of Ni in the hybrid filler system is to decrease the interfiber contact resistance when Ni concentration is less than the threshold point. The formation of structural defects leading to reduced reinforcing effect resulted in both a reduction of strength and an increase of the coefficient of thermal expansion in the composite film; these changes are responsible for the increases of both resistivity and TCR with increasing Ni concentration in the hybrid filler system.