• 제목/요약/키워드: Thermal reliability

검색결과 1,063건 처리시간 0.027초

실리콘 웨이퍼에 2중 다이싱 공정의 도입이 반도체 디바이스의 T.C. 신뢰성에 미치는 영향 (Effect of Dual-Dicing Process Adopted for Silicon Wafer Separation on Thermal-Cycling Reliability of Semiconductor Devices)

  • 이성민
    • 마이크로전자및패키징학회지
    • /
    • 제16권4호
    • /
    • pp.1-4
    • /
    • 2009
  • 본 연구에서는 실리콘 웨이퍼에 2중 다이싱 공정의 적용이 리드-온-칩 패키지로 조립되는 반도체 디바이스의 T.C. ($-65^{\circ}C$에서 $150^{\circ}C$까지의 온도변화에 지배되는 신뢰성 실험) 신뢰성에 어떠한 영향을 미치는 지를 보여준다. 기존 싱글 다이싱 공정은 웨이퍼에서 분리된 디바이스의 테두리 부위가 다이싱으로 인해 기계적으로 손상되는 결과를 보였으나, 2중 다이싱 공정은 분리된 디바이스의 테두리 부위가 거의 손상되지 않고 보존되는 것을 확인할 수 있었다. 이는 2중 다이싱의 경우 다이싱 동안 웨이퍼의 전면에 도입된 노치부위가 선택적으로 파손되면서 분리된 디바이스의 테두리 부위를 보호하기 때문으로 해석된다. 온도변화 실험을 통해 2중 다이싱 공정의 도입이 단일 다이싱 공정에 비해 T.C. 신뢰성에서도 대단히 좋은 결과를 보인다는 것을 확인할 수 있었다.

  • PDF

열충격하에서의 삽입실장 부품의 신뢰성에 관한 연구 (Reliability of Insert Mounted Components under Thermal Shock)

  • 이종범;노보인;정승부
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.202-204
    • /
    • 2006
  • The reliability of insert mounted components has been considered as their life time was getting increased. The spread of crack and the growth of IMC(intermetallic compound) were observed by SEM(scanning electron microscope) and EDS(energy dispersive spectroscope). The cracks in Sn-37wt%Pb under thermal shock test were found earlier than other solders(Sn-3.0wt%Ag-0.5wt%Cu and Sn-0.7wt%Cu-0.01wt%P). The IMC thickness was increased with increasing number of thermal shock cycles in the following order : Sn-0.7Cu-0.01P; Sn-3.0Ag-0.5Cu; Sn-37Pb

  • PDF

화력기 운전 특성을 고려한 Monte Carlo 발전시뮬레이션 (Monte Carlo Production Simulation Considering the Characteristics of Thermal Units)

  • 차준민;오광해;송길영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1114-1116
    • /
    • 1999
  • This paper presents a new algorithm which evaluates production cost and reliability indices under various constraints of the thermal generation system. In order to consider the operational constraints of thermal units effectively, the proposed algorithm is based on Monte Carlo techniques instead of analytical ones which have difficulty in modelling the units with additional constraints. At that point, generating units are modelled into two types, base load units and peaking units. These generating unit models are used in state duration sampling simulation for which approach can readily consider the peaking unit operating cycles and easily calculates frequency-duration indices. The proposed production simulation algorithm is applied to the IEEE Reliability Test System, and performs the production simulation under the given constraints. The results show that the proposed algorithm is accurate, reliable and useful.

  • PDF

열응력과 잔류응력하의 다층박막의 피로수명 해석 (Fatigue Life Analysis on Multi-Stacked Film Under Thermal and Residual Stresses)

  • 박준협
    • 대한기계학회논문집A
    • /
    • 제29권4호
    • /
    • pp.526-533
    • /
    • 2005
  • Reliability problem in inkjet printhead, one of MEMS devices, is also very important. To eject an ink drop, the temperature of heater must be high so that ink contacting with surface reaches above $280^{o}C$ on the instant. Its heater is embedded in the thin multi-layer in which several materials are deposited. MEMS processes are the main sources of residual stresses development. Residual stress is one of the factors reducing the reliability of MEMS devices. We measured residual stresses of single layers that consist of multilayer. FE analysis is performed using design of experiment(DOE). Transient analysis for heat transfer is performed to get a temperature distribution. And then static analysis is performed with the temperature distribution obtained by heat transfer analysis and the measured residual stresses to get a stress distribution in the structure. Although the residual stress is bigger than thermal stress, thermal stress is more influential on fatigue life.

고신뢰 머시닝센터를 위한 열변위 보상 센서 설계기술 (Design of Thermal Displacement Compensation Sensor for High Reliability Machine Tools)

  • 김일해;장동영;박정훈;박성욱;심풍수
    • 한국정밀공학회지
    • /
    • 제28권8호
    • /
    • pp.886-893
    • /
    • 2011
  • To increase the reliability and positional accuracy of a machine tool, a novel capacitive displacement sensor having a cylindrical shape is presented to measure the axial displacement of a machine tool spindle. Characteristics of the sensor were analyzed by numerical simulation. The sensor was built into a specific machine tool spindle and its performance was experimentally investigated. The accuracy of a thermal error compensation system of a machine tool can be enhanced greatly using proposed sensor.

화력발전소 제어시스템 신뢰도 향상을 위한 전자카드 운영 방법 연구 (Research on the Maintenance Method to Improve the Reliability of Control System in Thermal Power Plant)

  • 신영진;박두용;김호열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.240-242
    • /
    • 2006
  • The inspection method, which is used to inspect the electronic system for the control system of the fossil-powered thermal power plant, has the technical restrictions based on its primary application area, whereas the reliability is requested more and more by the plant operators to minimize the shutdown of a plant. This paper reviews the inspection methods currently used by the thermal power plant and how to adopt the condition based maintenance to increase the availability of power plant.

  • PDF

The Effect of Manipulating Package Construct and Leadframe Materials on Fracture Potential of Plastically Encapsulated Microelectronic Packages During Thermal Cycling

  • Lee, Seong-Min
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권3호
    • /
    • pp.28-32
    • /
    • 2001
  • It was studied in the present work how the thermal cycling performance of LOC (lead on chip) packages depends on the package construct or leadframe materials. First, package body thickness and Au wire diameter were manipulated for the selection of proper package design. Secondly, two different types of leadframe materials (i.e. copper and 52%Fe-48%Ni alloy) were tested to determine the better material for improved reliability margin of plastically encapsulated microelectronic packages. This work shows that manipulating package body thickness was more effective than an increase of Au wire from 23$\mu\textrm{m}$ to 33$\mu\textrm{m}$ for the prevention of wire debonding failure. Further, this work indicates that the LOC packages including the copper leadframes can be more susceptible to thermal cycling reliability degradation due to chip cracking than those including the alloy leadframes.

  • PDF

$\mu$BGA 솔더접합부의 형상과 수명평가 (Optimal Shape of $\mu$BGA Solder Joints and Thermal Fatigue Life)

  • 신영의;황성진;김종민
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.117-120
    • /
    • 2002
  • In this paper, several methods to predict the solder joint shape are studied. Although there are various methods to predict the solder joint shape, such as truncated sphere method, force-bal tranced analytical solution, and energy-based methods like surface evolver developed by Ken Brakke, we calculate solder joint shape of $\mu$BGA by two solder joint shape prediction methods(truncated sphere method and surface evolver) and then compare results of each method. The results in dicate that two methods can accurately predict the solder joint shape in an accurate range. After that, we calculate reliability solder joint shape under thermal cycle test by FEA program ANSYS. As a result, it could be found that optimal solder joint shape calculated by solder joint prediction method has best reliability in thermal cycle test.

  • PDF

Use of Modern Non­destructive Techniques in High Temperature Degradation of Material and Coatings

  • Lee, C.K.;Sohn, Y.H.
    • International Journal of Korean Welding Society
    • /
    • 제3권2호
    • /
    • pp.29-39
    • /
    • 2003
  • The durability and reliability of thermal barrier coatings (TBCs) play an important role in the service reliability, availability and maintainability (RAM) of hot­section components in advanced turbine engines for aero and utility applications. Photostimulated luminescence spectroscopy (PSLS) and electrochemical impedance spectroscopy (EIS) are being concurrently developed as complimentary non­destructive evaluation (NDE) techniques for quality control and life­remain assessment of TBCs. This paper overviews the governing principles and applications of the luminescence and the impedance examined in the light of residual stress, phase constituents and resistance (or capacitance) in TBC constituents including the thermally grown oxide (TGO) scale. Results from NDE by PSLS and EIS are discussed and related to the microstructural development during high temperature thermal cycling, examined by using a variety of microscopic techniques including focused ion beam (FIB) in­situ lift­out (INLO), transmission and scanning transmission electron microscopy (TEM and STEM).

  • PDF