• 제목/요약/키워드: Thermal reactivity

검색결과 203건 처리시간 0.03초

원자로 출력제어계통용 전력함 설계 및 제작 (Design and Manufacturing of Power Cabinet for Reactor Power Control System)

  • 이종무;김춘경;김석주;천종민;권순만;남정한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1626-1627
    • /
    • 2007
  • This paper deals with the design and manufacturing of power cabinet for reactor power control system(PCS). The PCS provides the control signals and motive power to operate the CEDMs(Control Element Drive Mechanism). The CEDM is raise and lower the CEAs(Control Element Assemblies) in the reactor core. The CEAs are constructed with the Boron-10 isotope which has a high microscopic cross section of absorption for thermal neutrons. This characteristic causes the addition of negative reactivity when a CEA is inserted and positive reactivity when it is withdrawn from the reactor core.

  • PDF

Novel homogeneous burnable poisons in pressurized water reactor ceramic fuel

  • Dodd, Brandon;Britt, Taylor;Lloyd, Cody;Shah, Manit;Goddard, Braden
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2874-2879
    • /
    • 2020
  • Due to excess reactivity, fresh nuclear fuel often contains burnable poisons. This research looks at six different burnable poisons and their impacts on reactivity, material attractiveness, and waste management. An MCNP simulation of a PWR fuel pin was performed with a fuel burnup of 60 GWd/MTHM to determine when each burnable poison fuel type would decrease below a k of 1. For determining the plutonium material attractiveness in each burnable poison fuel type, the plutonium isotopic content of the used fuel was evaluated using Bathke's Figure of Merit formula. For the waste management analysis, the thermal output of each burnable poison fuel type was determined through ORIGEN decay simulations at 100 and 300 years after being discharged from the core. The performance of all six burnable poisons varied over the three criteria considered and no single burnable poison performed best in all three considerations.

Analysis of Control Element Assembly Withdrawal at Full Power Accident Scenario Using a Hybrid Conservative and BEPU Approach

  • Kajetan Andrzej Rey;Jan Hruskovic;Aya Diab
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3787-3800
    • /
    • 2023
  • Reactivity Initiated Accident (RIA) scenarios require special attention using advanced simulation techniques due to their complexity and importance for nuclear power plant (NPP) safety. While the conservative approach has traditionally been used for safety analysis, it may lead to unrealistic results which calls for the use of best estimate plus uncertainty (BEPU) approach, especially with the current advances in computational power which makes the BEPU analysis feasible. In this work an Uncontrolled Control Element Assembly (CEA) Withdrawal at Full Power accident scenario is analyzed using the BEPU approach by loosely coupling the thermal hydraulics best-estimate system code (RELAP5/SCDAPSIM/MOD3.4) to the statistical analysis software (DAKOTA) using a Python interface. Results from the BEPU analysis indicate that a realistic treatment of the accident scenario yields a larger safety margin and is therefore encouraged for accident analysis as it may enable more economic and flexible operation.

Ag paste와 실리콘 웨이퍼의 반응성에 따른 태양전지의 전기적 성질 (Electrical Properties of Solar Cells With the Reactivity of Ag pastes and Si Wafer)

  • 김동선;황성진;김형순
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.54-54
    • /
    • 2009
  • Ag thick film has been used for electrode materials with the excellent conductivity. Ag electrode is used in screen-printed silicon solar cells as a electrode material. Compared to photolithography and buried-contact technology, screen-printing technology has the merit of fabricating low-priced cells and enormous cells in a few hours. Ag paste consists of Ag powders, vehicles and additives such as frits, metal powders (Pb, Bi, Zn). Frits accelerate the sintering of Ag powders and induce the connection between Ag electrode and Si wafer. Thermophysical properties of frits and reactions among Ag, frits and Si influence on cell performance. In this study, Ag pastes were fabricated with adding different kinds of frits. After Ag pastes were printed on silicon wafer by screen-printing technology, the cells were fired using a belt furnace. The cell parameters were measured by light I-V to determine the short-circuit current, open-circuit voltage, FF and cell efficiency. In order to study the relationship between the reactivity of Ag, frit, Si and the electrical properties of cells, the reaction of frits and Si wafer on was studied with thermal properties of frits. The interface structure between Ag electrode and Si wafer were also measured for understanding the reactivity of Ag, frit and Si wafer. The excessive reactivity of Ag, frit and Si wafer certainly degraded the electrical properties of cells. These preliminary studies suggest that reactions among Ag, frits and Si wafer should optimally be controlled for cell performances.

  • PDF

Conceptual design of a high neutron flux research reactor core with low enriched uranium fuel and low plutonium production

  • Rahimi, Ghasem;Nematollahi, MohammadReza;Hadad, Kamal;Rabiee, Ataollah
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.499-507
    • /
    • 2020
  • Research reactors for radioisotope production, fuel and material testing and research activities are designed, constructed and operated based on the society's needs. In this study, neutronic and thermal hydraulic design of a high neutron flux research reactor core for radioisotope production is presented. Main parameters including core excess reactivity, reactivity variations, power and flux distribution during the cycle, axial and radial power peaking factors (PPF), Pu239 production and minimum DNBR are calculated by nuclear deterministic codes. Core calculations performed by deterministic codes are validated with Monte Carlo code. Comparison of the neutronic parameters obtained from deterministic and Monte Carlo codes indicates good agreement. Finally, subchannel analysis performed for the hot channel to evaluate the maximum fuel and clad temperatures. The results show that the average thermal neutron flux at the beginning of cycle (BOC) is 1.0811 × 1014 n/㎠-s and at the end of cycle (EOC) is 1.229 × 1014 n/㎠-s. Total Plutonium (Pu239) production at the EOC evaluated to be 0.9487 Kg with 83.64% grade when LEU (UO2 with 3.7% enrichment) used as fuel. This designed reactor which uses LEU fuel and has high neutron flux and low plutonium production could be used for peaceful nuclear activities based on nuclear non-proliferation treaty concepts.

Non-thermal plasma를 이용한 VOCs의 제거기술

  • 송영훈;신완호;김관태;김석준;심순용;장동제
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.31-36
    • /
    • 1998
  • An experimental study has been performed to characterize fundamental aspects of VOCs removal using non-thermal palsma technique. The removed VOCs in the present study are toluene ($C_6H_5CH_3$), ethene ($C_2H_4$), propene ($C_3H_6$) which are typical air pollutants generated from industry and automobile engines. The non-thermal plasma used in the present experiments has been produced in a wire-cylinder reactor with pulsed corona or a packed-bed reactor filled with ceramic bead. These differently generated non-thermal plasma have been visualized with an intensified CCD. The images of non-thermal plasma have been used for optimal design of a corona reactor used in the present study. The experimental results show that the removal efficiencies of VOCs with non-thermal plasma are dependant on the reactivity of VOCs with OH, O, and $O_3$. The results also show that the removal efficiencies of VOCs decrease significantly when VOCs are treated with NO that is also oxidized in the presence of OH, O, and $O_3$.

  • PDF

Transient analysis of a subcritical reactor core with a MOX-Fuel using the birth-and-death model

  • Korbu, Tamara;Kuzmin, Andrei;Rudak, Eduard;Kravchenko, Maksim
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1731-1735
    • /
    • 2021
  • The operation of the nuclear reactor requires accurate and fast methods and techniques for analysing its kinetics. These techniques become even more important when the MOX-fuel is used due to the lower value of delayed neutron fraction 𝛽 for 239Pu. Based on a Birth-and-Death process review, the mathematical model of thermal reactor core has been proposed different from existing ones. The analytical method for thermal point-reactor parameters evaluation is described within this work. The proposed method is applied for analysis of the unsteady transient processes taking place in a thermal reactor at its start-up or shutdown power change, as well as during small accidental power variation from the rated value. Theoretical determination of MASURCA reactor core reactivity through the analysis of experimental data on neutron time spectra was made.

6 L급 압축착화 기관에서 천연가스-디젤 반응성 조정 연소 시 부하에 따른 배기 재순환율이 출력 및 열효율에 미치는 영향 분석 (Effects of Exhaust Gas Recirculation on Power and Thermal Efficiency of Reactivity Controlled Compression Ignition in Different Load Conditions with a 6-L Engine)

  • 이선엽;이석환;김창기;이정우
    • 한국가스학회지
    • /
    • 제24권6호
    • /
    • pp.1-10
    • /
    • 2020
  • 반응성 조정 압축착화 (Reactivity Controlled Compression Ignition, RCCI) 연소는 착화원인 디젤 연료를 압축 행정 중 이른 시점에 미리 분사하여, 공기와 미리 섞여 들어온 천연가스 연료뿐만 아니라 디젤 연료 자체도 미리 연소 전에 공기와 혼합하여 착화를 이루는 전체 예혼합 혼소(Dual-fuel combustion) 방식의 일종이다. 따라서 기존의 혼소 방식 중에서도 RCCI 연소는 질소산화물(Nitrogen Oxides, NOx) 및 매연(Smoke)을 획기적으로 줄일 수 있고, 또한 높은 열효율을 유지할 수 있는 장점을 지니고 있다. 특히 연소 중 NOx의 발생은 연소 온도와 국부적인 당량비에 관계된 상황에서 당량비를 낮추기 위해 예혼합율을 높이는 시도뿐만 아니라, 연소 온도 감소를 위한 배기재순환(Exhuast Gas Recirculation, EGR)을 적용하는 것이 효과적이다. 그러나 배기재순환은 대개의 경우 터보차저의 압축기 전단에서 추출하는 HP-EGR(High Pressure-EGR) 방식을 적용하는 경우가 많으므로, EGR율을 높일 경우 터빈으로 공급되는 배기의 양이 줄어 배기 엔탈피 감소로 인해 과급이 줄어드는 악영향을 초래할 수 있다. 따라서 본 연구에서는 서로 다른 두 운전조건에서 천연가스-디젤 RCCI 연소를 시행할 때, EGR율 변화에 따른 엔진 시스템의 제동 출력 및 열효율의 변화에 대하여 실험적으로 분석하였다. 실험 조건은 1,200 rpm/29 kW 수준의 조건과 1,800 rpm/90 kW 이하 조건에서 수행하였으며 NOx와 smoke의 배출조건은 Tier-4 final 배기규제를 기준으로 삼았으며 엔진의 내구성을 고려하여 최고 연소압력은 160 bar를 넘지 않게 제어하였다. 그 결과 1,200 rpm/29 kW 조건에서는 EGR율을 4에서 30 %로 높이더라도 출력 및 열효율의 변화는 미미하였으나, 1,800 rpm 조건에서는 EGR율을 4에서 28 %로 증가할 경우 최대 과급 압력이 2.3에서 1.8 bar로, 최고 출력은 90에서 65 kW로, 열효율은 37에서 33 %로 감소함을 알 수 있었다. 따라서 효과적인 EGR공급을 위해서는 현재 압축기 전단에서 추출하는 EGR을 후단에서 추출하는 LP-EGR (Low Pressure EGR) 시스템이 효과적일 수 있음을 시사한다.

Thermal Stability of $MnOx-WO_3-TiO_2$ Catalysts Prepared by the Sol-gel Method for Low-temperature Selective Catalytic Reduction

  • 신병길;이희수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • The selective catalytic reduction (SCR) of NOx by $NH_3$ is well known as one of the most convenient, efficient, and economical method to prevent NOx emission in flue gas from stationary sources. The degradation of the reactivity is the obstacle for its real application, since high concentrations of sulfur dioxide and thermal factor would deactivate the catalyst. It is necessary to develop high stability of catalysts for low-temperature SCR. Among the transition metal oxides, $WO_3$ is known to exhibit high SCR activity and good thermal stability. The $MnOx-WO_3-TiO_2$ catalysts prepared by sol-gel method with various $WO_3$ contents were investigated for low-temperature SCR. These catalysts were observed in terms of micro-structure and spectroscopy analyses. The $WO_3$ catalyst as a promoter is used to enhance the thermal stability of catalyst since it increases the phase transition temperature of $TiO_2$ support. It was found that the addition of tungsten oxides not only maintained the temperature window of NO conversion but also increased the acid sites of catalyst.

  • PDF

원자로에 있어서 Xenon 독소의 최적제어 (Optimal Control of Xenon Poison In Nuclear Reactor)

  • 곽은호;고병준
    • 대한전자공학회논문지
    • /
    • 제13권5호
    • /
    • pp.17-23
    • /
    • 1976
  • 고속열중성자로에서 정상 운전중인 원자로를 운전정지하였다가 재가동할 때 가장 문제가 되는 것은 핵분열 생성물인 Xe135의 독소작용이다. 이것은 Xe135가 원자로 출력에 영향을 주는 열중성자에 대한 흡수단면적이 크고 그의 반감기가 길기 때문이다. 그러므로 원자로의 일시적 운전정지가 요구될 때 이의 재가시에는 반듯이 이 독소를 능과할 수 있는 충분한 초과반응도를 가해 주던지, Xe135가 붕괴되어 그의 농도가 줄어든 이후에야 원자로의 재가동이 가능하게 된다. 위와 같은 문제는 사실상 원자로 운전시 안전성 뿐만 아니라 경제성에도 큰 영향을 주고 있다. 본 논문에서는 이 점을 고려하여 Pontoyagin의 최대원리를 이용하여 운전정지를 최적화시키므로서 언제든지 원자로를 전출력으로 재가동할 수 있도록 운전정지 방법을 개선하였다. 그러나 제어과정에서나 그 이후에도 X, 농도는 제어된 허용치를 넘지 않고 최소시간 이내에 모든 제어를 끝내도록 하였다. The buildup of fission product, i.e. Xe-135 poisoning, is a prime factor in restarting a nuclear reactor from the shutdown, which was under normal operation in the high flux thermal reactor, It is caused by the high absorption crosssection of Xe-135 to thermal neutrons and its long half life, from which the thermal power is affected. It is then possible to restart a nuclear reactor after the sufficient excess reactivity to override this poisoning must be inserted, or its concentration is decreased sufficiently when its temporary shutdown is required. As ratter of fact, these have an important influence not only on reactor safety but also on economic aspect in operation. Considering these points in this study, the shutdown process was cptimized using the Pontryagin's maximum principle so that the shutdown mirth[d was improved as to restart the reactor to its fulpower at any time, but the xenon concentration did not excess the constrained allowable value during and after shutdown, at the same time all the control actions were completed within minimum time from beginning of the shutdown.

  • PDF