원자로에 있어서 Xenon 독소의 최적제어

Optimal Control of Xenon Poison In Nuclear Reactor

  • 발행 : 1976.12.01

초록

고속열중성자로에서 정상 운전중인 원자로를 운전정지하였다가 재가동할 때 가장 문제가 되는 것은 핵분열 생성물인 Xe135의 독소작용이다. 이것은 Xe135가 원자로 출력에 영향을 주는 열중성자에 대한 흡수단면적이 크고 그의 반감기가 길기 때문이다. 그러므로 원자로의 일시적 운전정지가 요구될 때 이의 재가시에는 반듯이 이 독소를 능과할 수 있는 충분한 초과반응도를 가해 주던지, Xe135가 붕괴되어 그의 농도가 줄어든 이후에야 원자로의 재가동이 가능하게 된다. 위와 같은 문제는 사실상 원자로 운전시 안전성 뿐만 아니라 경제성에도 큰 영향을 주고 있다. 본 논문에서는 이 점을 고려하여 Pontoyagin의 최대원리를 이용하여 운전정지를 최적화시키므로서 언제든지 원자로를 전출력으로 재가동할 수 있도록 운전정지 방법을 개선하였다. 그러나 제어과정에서나 그 이후에도 X, 농도는 제어된 허용치를 넘지 않고 최소시간 이내에 모든 제어를 끝내도록 하였다. The buildup of fission product, i.e. Xe-135 poisoning, is a prime factor in restarting a nuclear reactor from the shutdown, which was under normal operation in the high flux thermal reactor, It is caused by the high absorption crosssection of Xe-135 to thermal neutrons and its long half life, from which the thermal power is affected. It is then possible to restart a nuclear reactor after the sufficient excess reactivity to override this poisoning must be inserted, or its concentration is decreased sufficiently when its temporary shutdown is required. As ratter of fact, these have an important influence not only on reactor safety but also on economic aspect in operation. Considering these points in this study, the shutdown process was cptimized using the Pontryagin's maximum principle so that the shutdown mirth[d was improved as to restart the reactor to its fulpower at any time, but the xenon concentration did not excess the constrained allowable value during and after shutdown, at the same time all the control actions were completed within minimum time from beginning of the shutdown.

The buildup of fission product, i.e. Xe-135 poisoning, is a prime factor in restarting a nuclear reactor from the shutdown, which was under normal operation in the high flux thermal reactor, It is caused by the high absorption crosssection of Xe-135 to thermal neutrons and its long half life, from which the thermal power is affected. It is then possible to restart a nuclear reactor after the sufficient excess reactivity to override this poisoning must be inserted, or its concentration is decreased sufficiently when its temporary shutdown is required. As ratter of fact, these have an important influence not only on reactor safety but also on economic aspect in operation. Considering these points in this study, the shutdown process was cptimized using the Pontryagin's maximum principle so that the shutdown mirth[d was improved as to restart the reactor to its fulpower at any time, but the xenon concentration did not excess the constrained allowable value during and after shutdown, at the same time all the control actions were completed within minimum time from beginning of the shutdown.

키워드