• 제목/요약/키워드: Thermal reaction

검색결과 2,287건 처리시간 0.034초

산소부화화염내 CO2의 열 및 화학적 효과에 대한 연구 (Investigation on Thermal and Chemical Effects of CO2 in Oxygen Enriched Flame)

  • 금성민;이창언;한지웅
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.617-624
    • /
    • 2005
  • An analysis of the effects of $CO_{2}$ on fundamental combustion characteristics was performed in Oxygen enriched condition by comparing the laminar burning velocities, flame structures, fuel oxidation paths. Fictitious $CO_{2}$ was introduced to discriminate the chemical reaction effects of $CO_{2}$ from the thermal effects. PREMIX code was utilized to evaluate the laminar burning velocities. OPPDIF code was utilized to investigate the flame structure and fuel oxidation path variation. The contributions of thermal effects on laminar burning velocities are dominant at lowly oxygen-enriched condition but those of chemical reaction effects become dominant at highly oxygen-enriched condition. Chemical reaction effects caused the additional flame temperature decrease besides thermal effects and oxygen-leakage increase in non-premixed flame. Specific fuel oxidation path and CO production path is enhanced in spite of overall decrement of fuel consumption rate by chemical reaction effects of$CO_{2}$.

딕카이트의 열적 특성 연구 (Thermal Behavior of Dickite)

  • 조현구
    • 한국광물학회지
    • /
    • 제12권1호
    • /
    • pp.11-22
    • /
    • 1999
  • Thermal behavior of dickite was studied by thermal analysis, X-ray diffraction analysis, electron microprobe analysis, and scanning electron microscopy, Dickite has an endothermic peak at about$ 650^{\circ}C$ and an exothermic one at $960^{\circ}C$ in the differential thermal analysis. The endothermic reaction is assigned to the decomposition of dickite to meta-dickite. Hydroxyl radicals are removed from dickite structure by the reaction, resulting in the weight loss about 10.5~14.5% and appearance of a 14$\AA$ phase different from other kaolin minerals. The reaction slowly proceed in the range of $200^{\circ}C$. As the completion of decomposition, aciclular mullite forms at the expense of meta-dickite plates with random crystallographic relationship. Mullites have diverse silica versus alumina ratio. The exothermic reaction without weight loss seems to be due to the formation of spinel and amorphous silica. The spinel phase shows cryptocrystalline globular morphology accompanying a little amount of silica. From spinel phase shows cryptocrystalling globular morphology accompanying a little amount of silica. From this work, it is suggested that mullite is formed from meta-dickite much lower temperature than the reported one in the previous works.

  • PDF

Multimax Reactor System을 이용한 안료제조시 중화공정의 열적위험성 평가 (Evaluation of Thermal Hazard in Neutralization Process of Pigment Plant by Multimax Reactor System)

  • 이근원;한민수
    • 한국안전학회지
    • /
    • 제23권6호
    • /
    • pp.91-99
    • /
    • 2008
  • The identification of thermal hazards associated with a process such as heats of reaction and understanding of thermodynamics before any large scale operations are undertaken. The evaluation of thermal behavior with operating conditions such as a reaction temperature, stirrer speed and reactants concentration in neutralization process of pigment plant are described. The experiments were performed by a sort of calorimetry with multimax reactor system The aim of the study was to evaluate the results of heat of reaction in terms of safety reliability to be practical applications. It suggested that we be proposed safe operating conditions and securities for accident prevention on reactor explosion through this study.

경화제 변화에 따른 WLP(Wafer Level Package)용 신규 Epoxy Resin System의 경화특성 (Cure Properties of Novel Epoxy Resin Systems for WLP (Wafer Level Package) According to the Change of Hardeners)

  • 김환건
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.57-67
    • /
    • 2022
  • The curing characteristics of naphthalene type epoxy resin systems according to the change of curing agent were investigated to develop a new next-generation EMC(Epoxy Molding Compound) with excellent warpage characteristics, low thermal expansion, and excellent fluidity for WLP(Wafer Level Package). As epoxy resins, DGEBA, which are representative bisphenol type epoxy resins, NE-16, which are the base resins of naphthalene type epoxy resins, and NET-OH, NET-MA, and NET-Epoxy resins newly synthesized based on NE-16 were used. As a curing agent, DDM (Diamino Diphenyl Methane) and CBN resin with naphthalene moiety were used. The curing reaction characteristics of these epoxy resin systems with curing agents were analyzed through thermal analysis experiments. In terms of curing reaction mechanism, DGEBA and NET-OH resin systems follow the nth curing reaction mechanism, and NE-16, NET-MA and NET-Epoxy resin systems follow the autocatalytic curing reaction mechanism in the case of epoxy resin systems using DDM as curing agent. On the other hand, it was found that all of them showed the nth curing reaction mechanism in the case of epoxy resin systems using CBN as the curing agent. Comparing the curing reaction rate, the epoxy resin systems using CBN as the curing agent showed a faster curing reaction rate than them with DDM as a hardener in the case of DGEBA and NET-OH epoxy resin systems following the same nth curing reaction mechanism, and the epoxy resin systems with a different curing mechanism using CBN as a curing agent showed a faster curing reaction rate than DDM hardener systems except for the NE-16 epoxy resin system. These reasons were comparatively explained using the reaction rate parameters obtained through thermal analysis experiments. Based on these results, low thermal expansion, warpage reduction, and curing reaction rate in the epoxy resin systems can be improved by using CBN curing agent with a naphthalene moiety.

도계폐기물의 열가수분해 반응에 따른 열전달 특성 연구 (A Study on Heat Transfer Characteristics according to Thermal Hydrolysis Reaction of Poultry Slaughter Waste)

  • 송형운;정희숙;김충곤
    • 유기물자원화
    • /
    • 제23권4호
    • /
    • pp.95-103
    • /
    • 2015
  • 본 연구에서 목적은 열가수분해 반응기에 최적설계를 위해 반응온도에 따른 도계폐기물의 열전도도를 정량하는 것이다. 이에 반응온도에 따른 탈수슬러지의 열전도도를 연속적으로 정량한 결과, 반응온도가 증가할수록 열가수분해 반응에 의한 고온, 고압에 의해 슬러지가 열적으로 가용화된다. 따라서, 슬러지 세포내에 결합수가 자유수로 용출되어 고상의 탈수슬러지가 액상의 슬러리로 상태가 변화된다. 그 결과 반응초기인 반응온도 $20^{\circ}C$에서 도계슬러지에 열전도도가 물에 비해 2.11배정도 낮지만 $200^{\circ}C$에서는 도계슬러지의 열전도도가 $0.677W/m{\cdot}^{\circ}C$로 물과 유사하다. 따라서 열가수분해에 의한 슬러지의 물리적 특성변화는 열전달 효율에 매우 중요한 인자임을 확인하였고, 열가수분해반응기 최적 설계를 위한 경계조건으로 실험 측정값과 일치도가 99.69%인 반응온도에 따른 열전도도 함수를 도출하였다.

산업 발생 노르말헥산과 벤젠 증기의 저온 분해 (Low-Temperature Thermal Decomposition of Industrial N-Hexane and Benzene Vapors)

  • 조완근;이준엽;강정환;신승호;권기동;김모근
    • 한국환경과학회지
    • /
    • 제15권7호
    • /
    • pp.635-642
    • /
    • 2006
  • Present study evaluated the low-temperature destruction of n-hexane and benzene using mesh-type transition-metal platinum(Pt)/stainless steel(SS) catalyst. The parameters tested for the evaluation of catalytic destruction efficiencies of the two volatile organic compounds(VOC) included input concentration, reaction time, reaction temperature, and surface area of catalyst. It was found that the input concentration affected the destruction efficiencies of n-hexane and benzene, but that this input-concentration effect depended upon VOC type. The destruction efficiencies increased as the reaction time increased, but they were similar between two reaction times for benzene(50 and 60 sec), thereby suggesting that high temperatures are not always proper for thermal destruction of VOCs, when considering the destruction efficiency and operation costs of thermal catalytic system together. Similar to the effects of the input concentration on destruction efficiency of VOCs, the reaction temperature influenced the destruction efficiencies of n-hexane and benzene, but this temperature effect depended upon VOC type. As expected, the destruction efficiencies of n-hexane increased as the surface area of catalyst, but for benzene, the increase rate was not significant, thereby suggesting that similar to the effects of the re- action temperature on destruction efficiency of VOCs, high catalyst surface areas are not always proper for economical thermal destruction of VOCs. Depending upon the inlet concentrations and reaction temperatures, almost 100% of both n-hexane and benzene could be destructed, The current results also suggested that when applying the mesh type transition Metal Pt/SS catalyst for the better catalytic pyrolysis of VOC, VOC type should be considered, along with reaction temperature, surface area of catalyst, reaction time and input concentration.

THERMAL IGNITION OF A REACTION DIFFUSION SYSTEMS IN SOME CLASS A GEOMETRIES WITH DIFFERENT THERMAL BOUNDARY CONDITIONS

  • Ajadi, S.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제11권3호
    • /
    • pp.7-20
    • /
    • 2007
  • We examined the steady state solution for a strongly exothermic mixtures in some class A geometries subjected to different boundary conditions under Arrhenius, Bimolecular and Sensitised reactions. The solution of the governing nonlinear reaction diffusion equation was obtained using the variational method formulation executed in Mathematica package. The paper elucidates the influence of geometry, boundary conditions and types of reaction on the thermal ignition of the reactive mixture. Apart from validating known results in literature, the solution gave further insight into the influence of material properties and conditions on the occurrence of thermal ignition.

  • PDF

열 원자층 식각법을 이용한 박막 재료 식각 연구 (Thermal Atomic Layer Etching of the Thin Films: A Review )

  • 조현희;이서현;윤은서;서지은;이진우;한동훈;남서아;한정환
    • 한국분말재료학회지
    • /
    • 제30권1호
    • /
    • pp.53-64
    • /
    • 2023
  • Atomic layer etching (ALE) is a promising technique with atomic-level thickness controllability and high selectivity based on self-limiting surface reactions. ALE is performed by sequential exposure of the film surface to reactants, which results in surface modification and release of volatile species. Among the various ALE methods, thermal ALE involves a thermally activated reaction by employing gas species to release the modified surface without using energetic species, such as accelerated ions and neutral beams. In this study, the basic principle and surface reaction mechanisms of thermal ALE?processes, including "fluorination-ligand exchange reaction", "conversion-etch reaction", "conversion-fluorination reaction", "oxidation-fluorination reaction", "oxidation-ligand exchange reaction", and "oxidation-conversion-fluorination reaction" are described. In addition, the reported thermal ALE processes for the removal of various oxides, metals, and nitrides are presented.

Synthesis of polyphenylcarbosilane via thermal rearrangement of polymethylphenylsilane in supercritical cyclohexane

  • Shin, Hee-Yong;Ryu, Jae-Hun;Bae, Seong-Youl;Lee, Yoon-Joo;Kwon, Woo-Teck;Kim, Young-Hee;Kim, Soo-Ryong
    • 한국응용과학기술학회지
    • /
    • 제30권1호
    • /
    • pp.9-15
    • /
    • 2013
  • A new process for the synthesis of polyphenylcarbosilane (PPCS) via thermal rearrangement of polymethylphenylsilane (PMPS) in supercritical cyclohexane was proposed and investigated at reaction temperatures of $380-420^{\circ}C$, reaction times of 1-2 h, and a pressure of 15 MPa. The structure, molecular weight, and molecular weight distribution of the product were characterized by FT-IR, Si-NMR, and GPC. The ceramic yield was also measured by TGA analysis. High-quality PPCS with high molecular weight and ceramic yield can be synthesized via a supercritical process. Furthermore, this process, when compared to the conventional method, tends to moderate the reaction conditions such as reaction temperature and time. It is concluded that thermal rearrangement in supercritical fluid is an efficient and viable process in terms of the resulting yield, efficiency, and reaction time compared with those of the conventional PCS production process.

손의 한랭자극이 인체생리반응과 의복의 쾌적성에 미치는 영향 -한랭혈관반응, 온랭감각, 한랭통증을 중심으로- (Effect of Cooling Hands in the Cold Water for the Physiological Responses and Clothing Comfort -Focused on Vascular Hunting Reaction, Thermal Sensation and Pain Sensation-)

  • 이원자
    • 복식문화연구
    • /
    • 제12권2호
    • /
    • pp.279-289
    • /
    • 2004
  • This study was conducted to compare the hunting reaction of finger in the cold water. Finger skin temperature is measured the left middle finger tip immersion in cold water of 5℃ for 30 minutes and measurements were made on finger skin temperature(Ts), thermal comfort, and cold pain sensations during the experiment at the spring (March) and Winter(December). Results were follows. Is before immersion was at the highest in spring and at the lowest in winter and was closely related to the indoor temperature Ts during immersion and recovery. Mean of finger skin temperature(MST), the skin temperature at the first rise(TTR) and amplitude of finger skin temperature reaction during immersion(AT) were significant higher in spring than that in winter(P<.01). The lowest skin temperature(LST) during the cold water immersion were significantly higher in spring than that in winter (P<.05). The frequency of the appearance of cold-Induced vase dilation(CIVD) was higher in spring than that in winter. However, time for the first temperature(TTR) and recovery time(RT) had no seasonal variation. In addition, cold pains during immersion were felt more strongly in spring than in winter. Local thermal sensation, finger thermal sensation in dynamic state during hand immersion was different from that in the Winter. Spring was slowly cold in cold water immersion.

  • PDF