• Title/Summary/Keyword: Thermal property of composite

Search Result 220, Processing Time 0.032 seconds

A Comparative Study on Characteristics of Cutting Tool Materials Based on SiAlON Ceramics (SiAlON계 절삭공구 소재의 특성 비교)

  • Kim, Seongwon;Choi, Jae-Hyung
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.502-508
    • /
    • 2021
  • SiAlON-based ceramics are a type of oxynitride ceramics, which can be used as cutting tools for heat-resistant super alloys (HRSAs). These ceramics are derived from Si3N4 ceramics. SiAlON can be densified using gas-pressure reactive sintering from mixtures of oxides and nitrides. In this study, we prepare an α-/β-SiAlON ceramic composite with a composition of Yb0.03Y0.10Si10.6Al1.4O1.0N15.0. The structure and mechanical/thermal properties of the densified SiAlON specimen are characterized and compared with those of a commercial SiAlON cutting tool. By observing the crystallographic structures and microstructures, the constituent phases of each SiAlON ceramic, such as α-SiAlON, β-SiAlON, and intergranular phases, are identified. By evaluating the mechanical and thermal properties, the contribution of the constituent phases to these properties is discussed as well.

Development of Composite Bipolar Plate for PEMFC (고분자 전해질 연료전지용 복합수지 분리판 개발)

  • Kang, Hyun-Min;Han, In-Su;Lim, Chan
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.3-7
    • /
    • 2007
  • Graphite/polymer composite bipolar plates for PEMFC are successfully developed, and their typical properties are superior to commercially available ones. Thermal property of the developed bipolar plate was evaluated by dynamic mechanical analyzer, and the results were compared to commercial ones. The specimens were immersed into the deionized water bath at $80^{\circ}$... for 1500hrs to evaluate dimensional stability and durability. Dimension, weight of the specimens as well as extraction conductivity was measured as each 500hrs. Fully molded bipolar plates without any machining or milling were also prepared using a specially developed mold, and they were applied to the fuel cell performance test. Results were compared to the machined commercial bipolar plate.

  • PDF

Development of Composite Bipolar Plate for PEMFC (고분자 전해질 연료전지용 복합수지 분리판 개발)

  • Kang, Hyun-Min;Han, In-Su;Lim, Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.5-7
    • /
    • 2007
  • Graphite/polymer composite bipolar plates for PEMFC are successfully developed, and their typical properties are superior to commercially available ones. Thermal property of the developed bipolar plate was evaluated by dynamic mechanical analyzer, and the results were compared to commercial ones. The specimens were immersed into the deionized water bath at $80^{\circ}C$ for 1500hrs to evaluate dimensional stability and durability. Dimension, weight of the specimens as well as extraction conductivity was measured as each 500hrs. Fully molded bipolar plates without any machining or milling were also prepared using a specially developed mold, and they were applied to the fuel cell performance test. Results were compared to the machined commercial bipolar plate.

  • PDF

Measurement of Mechanical Property and Thermal Expansion Coefficient of Carbon-Nanotube-Reinforced Epoxy Composites (탄소나노튜브로 강화된 에폭시 복합재료의 기계적 물성과 열팽창 계수 측정)

  • Ku, Min Ye;Kim, Jung Hyun;Kang, Hee Yong;Lee, Gyo Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.657-664
    • /
    • 2013
  • By using shear mixing and ultrasonication, we fabricated specimens of well-dispersed multi-walled carbon nanotube composites. To confirm the proper dispersion of the filler, we used scanning electron microscopy images for quantitative evaluation and a tensile test for qualitative assessment. Furthermore, the coefficients of thermal expansion of several specimens having different filler contents were calculated from the measured thermal strains and temperatures of the specimens. Based on the microscopy images of the well-dispersed fillers and the small deviations in the measurements of the tensile strength and stiffness, we confirmed the proper dispersion of nanotubes in the epoxy. As the filler contents were increased, the values of tensile strength increased from 58.33 to 68.81 MPa, and those of stiffness increased from 2.93 to 3.27 GPa. At the same time, the coefficients of thermal expansion decreased. This implies better thermal stability of the specimen.

Effects of SiC Particle Size and Inorganic Binder on Heat Insulation of Fumed Silica-based Heat Insulation Plates

  • Jo, Hye Youn;Oh, Su Jung;Kim, Mi Na;Lim, Hyung Mi;Lee, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.386-392
    • /
    • 2016
  • Heat insulation plates of fumed silica were prepared by mixing fumed silica, SiC powder and chopped glass fiber by a high speed mixer followed by pressing of the mixture powder in a stainless steel mold of $100{\times}100mm$. Composition of the plates, particle size of SiC, and type of inorganic binder were varied for observation of their contribution to heat insulation of the plate. The plate was installed on the upper portion of an electric furnace the inside temperature of which was maintained at $400^{\circ}C$ and $600^{\circ}C$, for investigation of heat transfer through the plate from inside of the electric furnace to outside atmosphere. Surface temperatures were measured in real time using a thermographic camera. The particle size of SiC was varied in the range of $1.3{\sim}17.5{\mu}m$ and the insulation was found to be most excellent when SiC of $2.2{\mu}m$ was incorporated. When the size of SiC was smaller or larger than $2.2{\mu}m$, the heat insulation effect was decreased. Inorganic binders of alkali silicate and phosphate were tested and the phosphate was found to maintain the heat insulation property while increasing mechanical properties.

Electromagnetic Properties of Nano Composite Conductor (나노 복합전도체의 전기자기적 특성 연구)

  • Lee, Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.106-109
    • /
    • 2016
  • The YBaCuO superconducting bulks were prepared by the thermal diffusion process involving the peritectic reaction to investigate the effect on microstructure and superconductivity. All the diffused YBaCuO could be successively separated from superconducting 123 phase by applying the thermal diffusion process. Electromagnetic properties of treated and untreated YBaCuO superconductor were evaluated to investigate the pinning effect. It was confirmed experimentally that a large amount of magnetic flux was trapped in the thermal treated superconducting bulk than that in the untreated one, indicating that the pinning centers of magnetic flux are related closely to the occurrence mechanism of the magnetic effect.

Wear Behavior of Al/SiC in Thermal Spray Process (알루미늄 판 표면에 용사된 Al/SiC의 마모 거동)

  • Kim, H.J.;You, M.H.;Lee, S.H.;Lee, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.111-116
    • /
    • 2006
  • Tribologcal property of the ceramics used in severe condition was investigated and both $Al_2O_3$ ball and Al/SiC composite made by thermal spray process[TSP] were used as a specimen in this study. Four kinds of material couple in ball and disk specimens were tested in the dry condition by using ball-on-disk type tribo-tester. Friction coefficient, surface roughness, wear rate, and photograph of the worn surface were investigated. Generally, High SiC contents[$40{\sim}50%$] specimens showed very low friction coefficient below 0.05 and little wear rate in dry condition. And also, low SiC contents[0%] specimens showed a moderate wear rate and high coefficient of friction at the same condition.

  • PDF

Physical Property of Carbon Fiber Reinforced Thermoplastic Polymer based Composites by Repeating Processing of PP Composition (PP 복합 조성물의 반복 가공에 의한 열가소성 폴리머 탄소섬유 강화 복합재료의 물리적 특성 변화 연구)

  • Jin-Woo Lee;Jae-Young Lee;Seoung-Bo Shin;Jae-Hyung Park;Hyun-Ju Park;Kyung-Hun Oh;Jin-Hyuk Huh;Yun-Hae Kim;Ji-Eun Lee
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.68-75
    • /
    • 2024
  • Polypropylene (PP), a thermoplastic resin with excellent mechanical, thermal, chemical, and water resistance properties, has been attracting attention due to its economic efficiency and recyclability. However, repeated processing of thermoplastic resins can lead to property degradation, and the point at which quality degradation occurs varies depending on the processing conditions. In this study, we evaluated the performance changes of composite materials with repeated processing by blending PP resin with various additives and conducting extrusion and injection processes repeatedly. In addition, we evaluated the mechanical properties of composite materials to evaluate the effect of MFI value change during repeated processing on fiber impregnation in composite material processing.

Study on the Fiber Alignment using Vacuum Filtration Method (Vacuum Filtration method를 이용한 단섬유(short fiber) 배열 영향성 분석)

  • Sung-Kwon Lee;Moo-Sun Kim;Ho-Yong Lee;Sung-Woong Choi
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.162-166
    • /
    • 2023
  • Although composite materials are increasingly utilized in general high-strength structures, the demand of performance characteristics as the multifunctional materials has been increased especially in the area of complex electronic devices. While the heat dissipation properties of devices are typically required properties, control of thermal property of composite material especially in the vertical direction is one of the problems to be solved due to its lamination process. In this study, CFRP was manufactured using the Vacuum filtration method for three types of solvent and CFs. In the composite material manufacturing process, the effect of solvent was examined using three solvents where solvents are most frequently used for the dispersion of fibers. Morphology of fiber was observed through a microscope to confirm the arrangement of CFs in the vertical direction. The alignment of fiber was examined through the measurement of the thermal conductivity of the manufactured specimen. For the thermal conductivity measurement, the higher thermal conductivity was obtained with the lower aspect ratio of CF. For the thermal conductivity in the through-plane direction, 8.687 W/m·K, 10.322 W/m·K, and 13.005 W/m·K of thermal conductivity was measured in the DMF, NMP and Acetone, respectively.

Property Evaluation of Kinetic Sprayed Al-Ni Composite Coatings (저온 분사 공정을 통하여 형성된 Al/Ni 복합소재 코팅의 특성 평가)

  • Byun, GyeongJun;Kim, JaeIck;Lee, Changhee;Kim, SeeJo;Lee, Seong
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.72-79
    • /
    • 2014
  • Shaped charge(SC) ammunition is a weapon that penetrates directly the target by made jet from metal liner on impacting at a target. In SC, the liner occupies significantly important role causing an explosion and penetration of the target. The Al-Ni composite coating was deposited on copper liner in a solid state via kinetic spraying to improve the explosive force. The mechanical properties, reactivity and microstructure were investigated to confirm the possibility of kinetic sprayed Al/Ni composite coating as a reactive liner material. Reactive liner using Al/Ni composite exhibited much enhanced reactivity than pure copper liner due to Self-propagating High-temperature Synthesis (SHS) reaction with significantly improved adhesive bond strength. Especially, among the Al/Ni composite coatings, AN11 (the Al versus Ni atomic percent ratio is 1:1) showed the greatest reactivity due to its widest reaction area between deposited Al and Ni.