• Title/Summary/Keyword: Thermal property of composite

Search Result 220, Processing Time 0.024 seconds

The Preparation Characteristic of Polyphenylenediamine -Dimercaptan Composite film (Polyphenylenediamine-Dimercaptan 복합 필름의 제막특성)

  • 박수길;나재진;이홍기;임기조;김상욱;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.105-108
    • /
    • 1996
  • The positive active material for polymer film battery was prepared by using Polyphenylenediamine(PPD) synthesized in our lab. and 2.5-dimercapto-1, 3, 4-thiadiazole(DMcT) in various mixture ratio. The transference measurement of surface morphology and thermal stability of prepared composite film was carried out by using SEM and TGA, respectively. Electrocyhemical property and electrical conductivity of composite film were also measured by using cyclic voltammetry and four-probe method in dry box, respectively. The thermal stability of prepared composite film is more than 20$0^{\circ}C$. The electrical conductivity of composite film increased and showed the highest value(about 3 S/cm)when doped at 0.4% LiClO$_4$solution. And we could confirm that DMcT effect on reactiviation of PPD through cyclic voltammogram.

  • PDF

Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing

  • Koo, Min Ye;Shin, Hon Chung;Kim, Won-Seok;Lee, Gyo Woo
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.255-261
    • /
    • 2014
  • Multi-walled carbon nanotube reinforced epoxy composites were fabricated using shear mixing and sonication. The mechanical, viscoelastic, thermal, and electrical properties of the fabricated specimens were measured and evaluated. From the images and the results of the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content showed better dispersion and higher strength than those of the other specimens. The Young's moduli of the specimens increased as the nanotube filler content was increased in the matrix. As the concentrations of nanotubes filler were increased in the composite specimens, their storage and loss moduli also tended to increase. The specimen having a nanotube filler content of 0.6 wt% showed higher thermal conductivity than that of the other specimens. On the other hand, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value than that of the other specimens. The electrical conductivities also increased with increasing content of nanotube filler. Based on the measured and evaluated properties of the composites, it is believed that the simple and efficient fabrication process used in this study was sufficient to obtain improved properties in the specimens.

Thermal Insulation Performance of Composite Waterproofing Method of Thermal Supplement Type (단열 보완형 복합방수공법의 단열성능에 관한 연구)

  • Choi, Sung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.59-66
    • /
    • 2014
  • Insulation of rooftop is one of the major performance to energy-saving construction. Further, waterproofing performance is also important. For such a reason, it is need to develop waterproofing method containing thermal insulation property. This study was wanted to evaluate thermal insulation performance about the composite waterproofing method of thermal supplement type that is developed recently. As a result of waterproofing performance test, every test item was showed over the performance standards of KS (Korean (Industrial) Standards). And the result of thermal insulation performance test, the highest temperature in the styrofoam box was $25.91^{\circ}C$, the bubble sheet box was $17.28^{\circ}C$, the insulation sheet box was $15.47^{\circ}C$ and the waterproofing sheet box of thermal supplement type was $24.11^{\circ}C$. In observations of thermal bridges of sheet's joint, thermal bridges was not identified at the sheet's joint. As a result, composite waterproofing method of thermal supplement type is interpreted to have thermal insulation performance.

Characterization and thermophysical properties of Zr0.8Nd0.2O1.9-MgO composite

  • Nandi, Chiranjit;Kaity, Santu;Jain, Dheeraj;Grover, V.;Prakash, Amrit;Behere, P.G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.603-610
    • /
    • 2021
  • The major drawback of zirconia-based materials, in view of their applications as targets for minor actinide transmutation, is their poor thermal conductivity. The addition of MgO, which has high thermal conductivity, to zirconia-based materials is expected to improve their thermal conductivity. On these grounds, the present study aims at phase characterization and thermophysical property evaluation of neodymium-substituted zirconia (Zr0.8Nd0.2O1.9; using Nd2O3 as a surrogate for Am2O3) and its composites with MgO. The composite was prepared by a solid-state reaction of Zr0.8Nd0.2O1.9 (synthesized by gel combustion) and commercial MgO powders at 1773 K. Phase characterization was carried out by X-ray diffraction and the microstructural investigation was performed using a scanning electron microscope equipped with energy dispersive spectroscopy. The linear thermal expansion coefficient of Zr0.8Nd0.2O1.9 increases upon composite formation with MgO, which is attributed to a higher thermal expansivity of MgO. Similarly, specific heat also increases with the addition of MgO to Zr0.8Nd0.2O1.9. Thermal conductivity was calculated from measured thermal diffusivity, temperature-dependent density and specific heat values. Thermal conductivity of Zr0.8Nd0.2O1.9-MgO (50 wt%) composite is more than that of typical UO2 fuel, supporting the potential of Zr0.8Nd0.2O1.9-MgO composites as target materials for minor actinides transmutation.

Preparation of Fe2O3 Coated on Mica for Infrared Reflectance Red Pigment and Thermal Property of Its Isolation-Heat Paint (Fe2O3가 코팅된 판상 mica의 적외선 반사용 적색안료 제조 및 차열도료의 열특성)

  • Lee, Hyun Jin;Kim, Dae Sung;Lee, Seung-Ho;Lim, Hyung Mi;Choi, Byung-Ki;Kang, Kwang-Jung;Jeong, Jae Il;Cho, Kum-Sung
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.61-67
    • /
    • 2015
  • $Fe_2O_3$ coated plate mica($Fe_2O_3$/mica) for infrared reflectance red pigment was prepared under hydrothermal treatment. $Fe_2O_3$ was perfectly coated on mica via the difference of surface charge between $Fe_2O_3$ and mica particles at pH 3. $Fe_2O_3$/mica was then calcined at $800^{\circ}C$ to stabilize the coated layer on mica. The infrared(IR) reflectance pigments were characterized by X-ray diffraction, FE-SEM, zeta potential, and a UV-Vis-NIR spectrophotometer. In particular, the CIE color coordinate and IR reflectance properties of $Fe_2O_3$/mica pigments were investigated in relation to the thickness variation of the $Fe_2O_3$ layer coated on mica of various lateral sizes. The isolation-heat red paints containing the pigments were prepared and optimized with a thinner, settling agent, and dispersant. Then, the films were made. The thermal property of isolation-heat on these films was observed through the relationship of the IR reflectance value, which was based on the variation of the $Fe_2O_3$ layer's thickness coated on mica and mica's lateral size as IR reflectance pigment. With an increase in IR reflectance on these films, the thermal property of isolation-heat was effectively enhanced.

Thermal Insulation Property of UV Cure Coatings Using Hollow Micro-Spheres (마이크로 중공구를 이용한 자외선 경화 코팅 박막의 단열 특성)

  • Kim, Nam Yi;Chang, Young-Wook;Kim, Seong Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.621-626
    • /
    • 2012
  • In this study, the composite coating materials with improved thermal insulation property were prepared by incorporating the hollow micro-spheres with high heat transfer resistance. The UV curable resin system consisting of hexa aliphatic urethane acrylate (UP118), trimethylolpropane triacrylate (TMPTA), 1,6-hexanediol diacrylate (HDDA), and photoinitiator (Irgacure184) was employed as an organic binder. The glass substrates were coated by the prepared composites via bar coating method and cured under UV radiation. The optical transparency, thermal insulation property, adhesion, and surface hardness of the glass coated with composites containing different type of micro-spheres were investigated. The incorporation of micro-spheres with only 20 vol% of content resulted in remarkable improvement in the thermal insulation property of the coated glass. In addition, the transparent coated glass with light transmittance of about 80% could be obtained when silica micro-sphere (SP) was used as a thermal barrier.

Synthesis and Characterization of Polyurethane-silica Composite Foam (폴리우레탄-실리카 복합 발포체의 합성 및 물성에 관한 연구)

  • Kang, Hyeon Seok;Kim, Sang bum
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.30-35
    • /
    • 2020
  • In this study, polyurethane-silica composite foams were synthesized to analyze thermal insulation characteristics and mechanical properties. In order to synthesize polyurethane-silica composite foams, polyester-silica composite polyols were first synthesized via a polymerization reaction with silica sol, dicarboxylic acid and glycol in monomer state. Physical properties of polyurethane-silica composite foams synthesized using the composite polyols were analyzed. From the thermal conductivity analysis, no significant differences among HPUF0, HPUF1, HPUF3 and HPUF5 were found. The compressive strength of polyurethane-silica composite foams increased as the silica content increased. The mechanical property of HPUF5 was also about 25% higher than that of HPUF0.

Development of Polyvinyl Alcohol (PVA) Non-woven Separator Coated with ZrO2 Ceramic Nanoparticles for Improving Electrochemical Performance and Thermal Property of Lithium Ion Batteries (열 특성 및 전기화학 특성이 향상된 리튬이차전지용 ZrO2 코팅 PVA (Polyvinyl Alcohol) 복합 부직포 분리막 개발)

  • Kim, Ki Jae
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.3
    • /
    • pp.49-54
    • /
    • 2017
  • We develop a ceramic composite separator prepared by coating $ZrO_2$ nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer on a polyvinyl alcohol (PVA) mechanical support prepared by electrospinning technique to improve thermal properties. The gurley number of the ceramic composite separator shows much lower value than that of a PE separator even though it possesses the polymeric coating layer with ceramic nanoparticles. In addition, the proposed sample shows higher electrolyte uptake than PE separator, leading to enhancing the ionic conductivity of the proposed sample and, by extension, the rate discharge properties of lithium ion batteries. Thermal stability of the ceramic composite separator is dramatically improved without any degradation in electrochemical performance compared to the performance of conventional PE separators.

Characterizations on the Thermal Insulation of SiC Coated Carbon-Carbon Composites (탄화규소로 코팅된 탄소-탄소 복합재료의 단열 특성)

  • Seo, Hyoung-IL;Lim, Byung-Joo;Sihn, Ihn Cheol;Bae, Soobin;Lee, Hyung-Ik;Choi, Kyoon;Lee, Kee Sung
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.101-107
    • /
    • 2020
  • This study investigates the characterization on the thermal insulation properties of silicon carbide coating on the Cf-C composites. The silicon carbide coatings by chemical vapor deposition on the C/C composites are prepared to evaluate thermal resistance. Firstly, we perform the basic insulation test by thermal shock at 1350℃ in air on the C/C composite and SiC-coated C/C composite. We also performed the burner tests on the surface of the composites at high temperatures such as 1700 and 2000℃, and the weight change after burner tests are measured. The damages on the surface of C/C composite and SiC-coated composite are observed. As a result, the SiC coating is beneficial to protect the C/C composite from high temperature even though damages such as defoliation, crack and voids are observed during burner test at 2000℃.

Property Evaluation of Epoxy Resin based Aramid and Carbon Fiber Composite Materials (에폭시 수지 적용 아라미드 및 탄소섬유 복합재료의 물성연구)

  • Seo, Dae-Kyung;Ha, Na Ra;Lee, Jang-Hun;Park, Hyun-Gyu;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • Recently, super fiber reinforced composite materials are widely used in many industries due to high mechanical properties. In this study, 2 different types of composite materials were manufactured in order to compare their mechanical properties. Carbon and Aramid fibers were used for reinforcement materials and Bisphenol-A type epoxy resin was for matrix. Two kinds of fiber-reinforced materials were manufactured by RIM(Resin Injection Molding) method. Before manufacturing composite materials, the optimal manufacturing and curing process condition were established and the ratio of reinforcement to epoxy resin was discussed. FT-IR analysis was conducted to clarify the structure of epoxy resin. Thermal and mechanical property test were also carried out. The cross-section of composite materials was observed using a scanning electron microscope(SEM).