• Title/Summary/Keyword: Thermal plasma spray coating

Search Result 111, Processing Time 0.038 seconds

Effect of coating thickness on contact fatigue and wear behavior of thermal barrier coatings

  • Lee, Dong Heon;Jang, Bin;Kim, Chul;Lee, Kee Sung
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.5
    • /
    • pp.499-504
    • /
    • 2019
  • The effect of coating thickness on the contact fatigue and wear of thermal barrier coatings (TBCs) are investigated in this study. The same bondcoat material thickness (250 ㎛) are used for each sample, which allows the effect of the coating thickness of the topcoat to be investigated. TBCs with different coating thicknesses (200, 400, and 600 ㎛) are prepared by changing processing parameters such as the feeding rate of the feedstock, spraying speed, and spraying distance during APS(air plasma spray) coating. The damage size on the surface are strongly affected by the coating thickness effect. Although the damage size from contact fatigue using a spherical indenter diminish at a TBC of 200 ㎛, a high wear resistance such as a low friction coefficient and little mass change are found at a TBC of 600 ㎛. These results indicate that the coating thickness strongly affects the mechanical behavior in TBCs during gas turbine operation.

Fabrication and Characteristics of Thermal Barrier Coatings in the La2O3-Gd2O3-ZrO2 System by Using Suspension Plasma Spray with Different Suspension Preparations (서스펜션의 준비방법에 따른 서스펜션 플라즈마 용사를 이용한 La2O3-Gd2O3-ZrO2 계 열차폐코팅의 제조와 특성)

  • Lee, Soyul;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Nahm, Sahn;Kim, Seongwon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • Rare-earth zirconates, including lanthanum zirconate and gadolinium zirconate, have been investigated as ones of the most promising candidates for next-generation thermal barrier coating (TBC) materials due to their excellent properties such as low thermal conductivity, chemical stability at high temperature and so on. In this study, TBCs with three compositions, in the $La_2O_3-Gd_2O_3-ZrO_2$ system with reduced rare-earth contents from $RE_2Zr_2O_7$ compositions, were fabricated by using suspension plasma spray with different suspension preparation methods. The phase formation, microstructure, and thermal properties of TBCs were examined. In particular, each coating exhibited single fluorite phase and a dense, vertically-separated microstructure. The potential of coatings with rare-earth zirconates for TBC applications was also discussed.

Properties of Plasma Sprayed $Al_2O_3/SS316$ Graded Coatings (플라즈마 용사용 $Al_2O_3/SS316$ 복합 분말 제조 및 경사 코팅충의 제조에 관한 연구)

  • 민재웅;송병길;김삼중;노재승;서동수
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.109-115
    • /
    • 2002
  • In the case of using high temperature by coating ceramic/metal, large stress was produced due to difference of thermal expansion coefficient between those. And then lead to delamination. In order to relaxation of the stress A1$_2$O$_3$/SS316 composite powders with $10wt.%Al_2O_3$ compositional gradient and $10wt.%Al_2O_3$ agglomerated powder were made by spray drying method. These powders were sintered to improve the strength and to be plasma sprayed in order to fabricate the FGC(functionally graded coating). The influence of gun power, working distance and Ar pressure on the microstructure of the coating layer was studied in order to optimize the plasma spray conditions. It was proven that the optimum conditions were 40kw gun power, 5cm working distance and $100ft^3/h$ Ar flow for both powders. FGC with 10 compositional steps was fabricated and the total thickness was 1.3mm. FGC was heat treated at $1100^{\circ}C$for 10hours to evaluate the heat resisting characteristics.

Thermal and Mechanical Evaluation of Environmental Barrier Coatings for SiCf-SiC Composites (SiCf-SiC 복합재료의 내환경 코팅 및 열, 기계적 내구성 평가)

  • Chae, Yeon-Hwa;Moon, Heung Soo;Kim, Seyoung;Woo, Sang Kuk;Park, Ji-Yeon;Lee, Kee Sung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.84-93
    • /
    • 2017
  • This study investigates thermal and mechanical characterization of environmental barrier coating on the $SiC_f-SiC$ composites. The spherical environmental barrier coating (EBC) powders are prepared using a spray drying process for flowing easily during coating process. The powders consisting of mullite and 12 wt% of Ytterbium silicate are air plasma sprayed on the Si bondcoat on the LSI SiC fiber reinforced SiC composite substrate for protecting the composites from oxidation and water vapor reaction. We vary the process parameter of spray distance during air plasma spray of powders, 100, 120 and 140 mm. After that, we performed the thermal durability tests by thermal annealing test at $1100^{\circ}C$ for 100hr and thermal shock test from $1200^{\circ}C$ for 3000 cycles. As a result, the interface delamination of EBC never occur during thermal durability tests while stable cracks are prominent on the coating layer. The crack density and crack length depend on the spray distance during coating. The post indentation test indicates thermal tests influence on the indentation load-displacement mechanical behavior.

Effect of Spraying Distance on Properties of $B_4C$ Coating

  • Zeng-Y;Zhang-Y.F;Huang-J.Q
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.179-182
    • /
    • 1998
  • Boron carbide coating has some very attractive properties for nuclear and semiconductor industry. The potential of atmosheric plasma spray as manufacturing methods for $B_4C$ coating was discussed. In this work, the boron carbide coating with low porosity, high microhardness and good life of thermal shock resistance was deposited by the control of spraying distance. The relationship between the properties of $B_4C$ coatings and their spraying distance was studied.

  • PDF

Characteristics of Bulk and Coating in Gd2-xZr2+xO7+0.5x(x = 0.0, 0.5, 1.0) System for Thermal Barrier Coatings

  • Kim, Sun-Joo;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.652-658
    • /
    • 2016
  • Gadolinium zirconate, $Gd_2Zr_2O_7$, is one of the most versatile oxides among the new thermal-barrier-coating (TBC) materials for replacing conventional yttira-stabilized zirconia (YSZ). $Gd_2Zr_2O_7$ exhibits excellent properties, such as low thermal conductivity, high thermal expansion coefficient comparable with that of YSZ, and chemical stability at high temperature. In this study, bulk and coating specimens with $Gd_{2-x}Zr_{2+x}O_{7+0.5x}$ (x = 0.0, 0.5, 1.0) compositions were fabricated in order to examine the characteristics of this gadolinium zirconate system with different Gd content for TBC applications. Especially, coatings with $Gd_{2-x}Zr_{2+x}O_{7+0.5x}$ (x = 0.0, 0.5, 1.0) compositions were produced by suspension plasma spray (SPS) with suspension of raw powder mixtures prepared by planetary milling followed by ball milling. Phase formation, microstructure, and thermal diffusivity were characterized for both sintered and coated specimens. Single phase materials with pyrochlore or fluorite were fabricated by normal sintering as well as SPS coating. In particular, coated specimens showed vertically-separated columnar microstructures with thickness of $400{\sim}600{\mu}m$.

PROPERTIES OF PLASMA SPRAYED COATINGS

  • Ding, C.X.;Zhang, Y.F.;Xia, J.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.58-63
    • /
    • 1995
  • Plasma spray has attracted attention as an effective method for obtaining protective coatings. In this paper, the physical, mechanical and thermal properties of coatings are reviewed. The microstructural features of the coatings are described. The relationship between the properties of coatings and their microstructure is also discussed. Plasma sprayed coatings are used to reduce wear and improve thermal protection on a large number of components in various industries. In some cases, the conditions of application are very aggressive and therefore the resulting maintenance costs are expensive. Improved coating materials and appropriate properties of coatings are the most promising ways to solve these problems[1,2]. The optimum coating properties depend on the microstructure of coatings[1-5]. In this paper, some ceramic coatings frequently used in industries were reported. The physical, mechanical and thermal properties of ceramic coatings are reviewed. The microstructure features of coatings are addressed. The relationship between the microstructure of coatings and their properties are discussed.

  • PDF

Experimental and numerical investigation on gas turbine blade with the application of thermal barrier coatings

  • Aabid, Abdul;Jyothi, Jyothi;Zayan, Jalal Mohammed;Khan, Sher Afghan
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.275-293
    • /
    • 2019
  • The engine parts material used in gas turbines (GTs) should be resistant to high-temperature variations. Thermal barrier coatings (TBCs) for gas turbine blades are found to have a significant effect on prolonging the life cycle of turbine blades by providing additional heat resistance. This work is to study the performance of TBCs on the high-temperature environment of the turbine blades. It is understood that this coating will increase the lifecycles of blade parts and decrease maintainence and repair costs. Experiments were performed on the gas turbine blade to see the effect of TBCs in different combinations of materials through the air plasma method. Three-layered coatings using materials INCONEL 718 as base coating, NiCoCrAIY as middle coating, and La2Ce2O7 as the top coating was applied. Finite element analysis was performed using a two-dimensional method to optimize the suitable formulation of coatings on the blade. Temperature distributions for different combinations of coatings layers with different materials and thickness were studied. Additionally, three-dimensional thermal stress analysis was performed on the blade with a commercial code. Results on the effect of TBCs shows a significant improvement in thermal resistance compared to the uncoated gas turbine blade.

Evaluation of the characteristics of plasma sprayed ceramic coatings by Indentation test (압입 시험에 의한 플라즈마 세라믹 용사코팅의 특성 평가)

  • Choi, Se-Young;Chae, Young-Hun;Kim, Seock-Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.248-254
    • /
    • 2002
  • The most controversial topics in plasma sprayed ceramic coating system are recently mechanical properties such as bond strength, cohesive strength, toughness and so on. Determination of bond strength of coatings is one of the most important problems. In the industry, the bond strength of coating system has been estimated by Pull-off test(ASTM standard C633-79). But, without a fixed jig and specimen, it is impossible to obtain the bond strength. Therefore, it is necessary to study the critical fracture load on interface of the coating by indentation test. Because the critical fracture load plays an important role in evaluating the bond strength for plasma sprayed ceramic coating system. So, we have estimated critical fracture load in plasma sprayed ceramic coating system, and it was shown that inverse relationship between the cross-section hardness of coating and the critical fracture load(Pc). In case of the high load(1kgf, 2kgf) in $Al_{2}O_{3}+13%TiO_{2}$, it was found that the critical point(Pco), which the coating was broken on.

  • PDF

Lifetime Performance of EB-PVD Thermal Barrier Coatings with Coating Thickness in Cyclic Thermal Exposure

  • Lu, Zhe;Lee, Seoung Soo;Lee, Je-Hyun;Jung, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.571-576
    • /
    • 2015
  • The effects of coating thickness on the delamination and fracture behavior of thermal barrier coating (TBC) systems were investigated with cyclic flame thermal fatigue (FTF) and thermal shock (TS) tests. The top and bond coats of the TBCs were prepared by electron beam-physical vapor deposition and low pressure plasma spray methods, respectively, with a thickness ratio of 2:1 in the top and bond coats. The thicknesses of the top coat were 200 and $500{\mu}m$, and those of the bond coat were 100 and $250{\mu}m$. FTF tests were performed until 1140 cycles at a surface temperature of $1100^{\circ}C$ for a dwell time of 5 min. TS tests were also done until more than 50 % delamination or 1140 cycles with a dwell time of 60 min. After the FTF for 1140 cycles, the interface microstructures of each TBC exhibited a sound condition without cracking or delamination. In the TS, the TBCs of 200 and $500{\mu}m$ were fully delaminated (> 50 %) within 171 and 440 cycles, respectively. These results enabled us to control the thickness of TBC systems and to propose an efficient coating in protecting the substrate in cyclic thermal exposure environments.