DOI QR코드

DOI QR Code

Effect of coating thickness on contact fatigue and wear behavior of thermal barrier coatings

  • Lee, Dong Heon (Department of Automotive Engineering, Kookmin University) ;
  • Jang, Bin (School of Mechanical Engineering, Kookmin University) ;
  • Kim, Chul (School of Mechanical Engineering, Kookmin University) ;
  • Lee, Kee Sung (School of Mechanical Engineering, Kookmin University)
  • Received : 2019.04.17
  • Accepted : 2019.08.02
  • Published : 2019.10.01

Abstract

The effect of coating thickness on the contact fatigue and wear of thermal barrier coatings (TBCs) are investigated in this study. The same bondcoat material thickness (250 ㎛) are used for each sample, which allows the effect of the coating thickness of the topcoat to be investigated. TBCs with different coating thicknesses (200, 400, and 600 ㎛) are prepared by changing processing parameters such as the feeding rate of the feedstock, spraying speed, and spraying distance during APS(air plasma spray) coating. The damage size on the surface are strongly affected by the coating thickness effect. Although the damage size from contact fatigue using a spherical indenter diminish at a TBC of 200 ㎛, a high wear resistance such as a low friction coefficient and little mass change are found at a TBC of 600 ㎛. These results indicate that the coating thickness strongly affects the mechanical behavior in TBCs during gas turbine operation.

Keywords

References

  1. S. Bose, in "High Temperature Coatings. Burlington" (MA USA, 2007) p. 162-183.
  2. R.W. Trice, Y. Jennifer Su, J.R. Mawdsley, K.T. Faber, A.R. De Arellano-Lopez, H. Wang, and W.D. Porter, J. Mater. Sci. 37 (2002) 2359-2365. https://doi.org/10.1023/A:1015310509520
  3. S.I. Jung, J.H. Kim, J.H. Lee, Y.G. Jung, U. Paik, and K.S. Lee, Surf. Coat. Tech. 204 (2009) 802-806. https://doi.org/10.1016/j.surfcoat.2009.09.070
  4. S.W. Myoung, J.H. Kim, W.R. Lee, Y.G. Jung, K.S. Lee, and U. Paik, Surf. Coat. Tech. 205 (2010) 1229-1235. https://doi.org/10.1016/j.surfcoat.2010.08.063
  5. B.R. Lawn, J. Am. Ceram. Soc. 81[8] (1998) 1977-1994. https://doi.org/10.1111/j.1151-2916.1998.tb02580.x
  6. F. Guiberteau, N.P. Padture, H. Cai, and B.R. Lawn, Phil. Mag. A. 68[5] (1993) 1003-1016. https://doi.org/10.1080/01418619308219382
  7. K.S. Lee, Y.G. Jung, I.M. Peterson, B.R. Lawn, D.K. Kim, and S.K. Lee, J. Am. Ceram. Soc. 83[9] (2000) 2255-2262. https://doi.org/10.1111/j.1151-2916.2000.tb01544.x
  8. K.S. Lee, S. Wuttiphan, X.Z. Hu, K.S. Lee, and B.R. Lawn, J. Am. Ceram. Soc. 81[3] (1998) 571-580. https://doi.org/10.1111/j.1151-2916.1998.tb02376.x
  9. K.S. Lee, K.S. Jang, J.H. Park, T.W. Kim, I.S. Han, and S.K. Woo, Materials and Design 32 (2011) 4394-4401. https://doi.org/10.1016/j.matdes.2011.03.080
  10. A. Pajares, L. Wei, and B.R. Lawn, J. Mater. Res. 10[10] (1995) 2613-2625. https://doi.org/10.1557/JMR.1995.2613
  11. J.Y. Kwon, J.H. Lee, H.C. Kim, Y.G. Jung, U. Paik, and K.S. Lee, Mater. Sci. and Eng. A. 429 (2006) 173-180. https://doi.org/10.1016/j.msea.2006.05.082
  12. K.S. Lee, S.K. Kim, C. Kim, T.W. Kim, and D.K. Kim, J. Mater. Sci. 42 (2007) 9116-9120. https://doi.org/10.1007/s10853-007-2063-2
  13. H.E. Eaton and R.C. Novak, Surf. Coat. Tech. 36 (1988) 75-85. https://doi.org/10.1016/0257-8972(88)90137-5
  14. F. Cernuschi, L. Lorenzoni, S. Capelli, C. Guardamagna, M. Karger, R. Vaben, K. Niessen, N. Markocsan, J. Menuey, and C. Giolli, Wear. 271 (2011) 2909-2918. https://doi.org/10.1016/j.wear.2011.06.013