Browse > Article
http://dx.doi.org/10.4191/kcers.2016.53.6.652

Characteristics of Bulk and Coating in Gd2-xZr2+xO7+0.5x(x = 0.0, 0.5, 1.0) System for Thermal Barrier Coatings  

Kim, Sun-Joo (Engineering Ceramics Center, Korea Institute of Ceramic & Engineering Technology)
Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic & Engineering Technology)
Oh, Yoon-Suk (Engineering Ceramics Center, Korea Institute of Ceramic & Engineering Technology)
Kim, Hyung-Tae (Engineering Ceramics Center, Korea Institute of Ceramic & Engineering Technology)
Jang, Byung-Koog (Research Center for Structural Materials, National Institute for Materials Science)
Kim, Seongwon (Engineering Ceramics Center, Korea Institute of Ceramic & Engineering Technology)
Publication Information
Abstract
Gadolinium zirconate, $Gd_2Zr_2O_7$, is one of the most versatile oxides among the new thermal-barrier-coating (TBC) materials for replacing conventional yttira-stabilized zirconia (YSZ). $Gd_2Zr_2O_7$ exhibits excellent properties, such as low thermal conductivity, high thermal expansion coefficient comparable with that of YSZ, and chemical stability at high temperature. In this study, bulk and coating specimens with $Gd_{2-x}Zr_{2+x}O_{7+0.5x}$ (x = 0.0, 0.5, 1.0) compositions were fabricated in order to examine the characteristics of this gadolinium zirconate system with different Gd content for TBC applications. Especially, coatings with $Gd_{2-x}Zr_{2+x}O_{7+0.5x}$ (x = 0.0, 0.5, 1.0) compositions were produced by suspension plasma spray (SPS) with suspension of raw powder mixtures prepared by planetary milling followed by ball milling. Phase formation, microstructure, and thermal diffusivity were characterized for both sintered and coated specimens. Single phase materials with pyrochlore or fluorite were fabricated by normal sintering as well as SPS coating. In particular, coated specimens showed vertically-separated columnar microstructures with thickness of $400{\sim}600{\mu}m$.
Keywords
Thermal barrier coatings (TBCs); Gadolinium zirconate; Suspension plasma spray; Phase formation; Thermal diffusivity;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 N. Curry, Z. Tang, N. Markocsan, and P. Nylen, "Influence of Bond Coat Surface Roughness on the Structure of Axial Suspension Plasma Spray Thermal Barrier Coatings - Thermal and Lifetime Performance," Surf. Coat. Technol., 268 15-23 (2015).   DOI
2 C. Kittel and P. McEuen, "Introduction to Solid State Physics, 8th ed.," pp. 125-8. Wiley New York, USA. (1986).
3 D. R. Clarke and S. R. Phillpot, "Thermal Barrier Coating Materials," Mater. Today, 8 [6] 22-9 (2005).   DOI
4 R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stover, "Zirconates as New Materials for Thermal Barrier Coatings," J. Am. Ceram. Soc., 83 [8] 2023-28 (2000).
5 R. Vassen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stover, "Overview on Advanced Thermal Barrier Coatings," Surf. Coat. Technol., 205 [4] 938-42 (2010).   DOI
6 D. R. Clarke, M. Oechsner, and N. P. Padture, "Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines," MRS Bull., 37 [10] 891-98 (2012).   DOI
7 C. Kim, Y. S. Heo, T. W. Kim, and K. S. Lee, "Fabrication and Characterization of Zirconia Thermal Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying (in Korean)," J. Korean Ceram. Soc., 50 [5] 326-32 (2013).   DOI
8 J. Wu, X. Wei, N. P. Padture, P. G. Klemens, M. Gell, E. García, P. Miranzo, and M. I. Osendi, "Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications," J. Am. Ceram. Soc., 85 [12] 3031-35 (2002).   DOI
9 W. Pan, S. R. Phillpot, C. Wan, A. Chernatynskiy, and Z. Qu, "Low Thermal Conductivity Oxides," MRS Bull., 37 [10] 917-22 (2012).   DOI
10 X. Q. Cao, R. Vassen, and D. Stoever, "Ceramic Materials for Thermal Barrier Coatings," J. Eur. Ceram. Soc., 24 [1] 1-10 (2004).   DOI
11 J. W. Fergus, "Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines," Metall. Mater. Trans. E, 1 [2] 118-31 (2014).   DOI
12 H. Lehmann, D. Pitzer, G. Pracht, R. Vassen, and D. Stover, "Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System," J. Am. Ceram. Soc., 86 [8] 1338-44 (2003).   DOI
13 S.-J. Kim, W.-J. Lee, C.-S. Kwon, S.-M. Lee, Y.-S. Oh, H.-T. Kim, D.-S. Im, and S. Kim, "Phase Formation and Thermo-Physical Properties of $GdO_{1.5}-ZrO_2$ System for Thermal Barrier Coating Application (in Korean)," J. Korean Ceram. Soc., 51 [6] 554-59 (2014).   DOI
14 K.-H. Kwak, B.-C. Shim, S.-M. Lee, Y.-S. Oh, H.-T. Kim, B.-K. Jang, and S. Kim, "Formation and Thermal Properties of Fluorite-Pyrochlore Composite Structure in $La_2(Zr_XCe_{1-X})_2O_7$ Oxide System," Mater. Lett., 65 [19] 2937-40 (2011).   DOI
15 J. Wu, N. P. Padture, P. G. Klemens, M. Gell, E. Garcia, P. Miranzo, and M. I. Osendi, "Thermal Conductivity of Ceramics in the $ZrO_2-GdO_{1.5}$ System," J. Mater.Res., 17 [12] 3193-200 (2002).   DOI
16 C. G. Levi, "Emerging Materials and Processes for Thermal Barrier Systems," Curr. Opin Solid State Mater. Sci., 8 [1] 77-91 (2004).   DOI
17 U. Schulz, B. Saruhan, K. Fritscher, and C. Leyens, "Review on Advanced Eb-Pvd Ceramic Topcoats for Tbc Applications," Int. J. Appl. Ceram. Technol., 1 [4] 302-15 (2004).   DOI
18 R. Vassen, H. Kassner, A. Stuke, F. Hauler, D. Hathiramani, and D. Stover, "Advanced Thermal Spray Technologies for Applications in Energy Systems," Surf. Coat. Technol., 202 [18] 4432-37 (2008).   DOI
19 S. Sampath, U. Schulz, M. O. Jarligo, and S. Kuroda, "Processing Science of Advanced Thermal-Barrier Systems," MRS Bulletin., 37 [10] 903-10 (2012).   DOI
20 W. Fan and Y. Bai, "Review of Suspension and Solution Precursor Plasma Sprayed Thermal Barrier Coatings," Ceram. Int., 42 14299-312 (2016).   DOI
21 J. B. Nelson and D. P. Riley, "An Experimental Investigation of Extrapolation Methods in the Derivation of Accurate Unit-Cell Dimensions of Crystals," Proc. Phys. Soc., 57 [3] 160 (1945).   DOI
22 K. VanEvery, M. J. M. Krane, R. W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, "Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties," J. Therm. Spray Technol., 20[4] 817-28 (2011).   DOI
23 D. Michel and R. Collongues, "Study by Raman Spectroscopy of Order-Disorder Phenomena Occurring in Some Binary Oxides with Fluorite-Related Structures," J. Raman Spectro., 5 [2] 163-80 (1976).   DOI
24 R. Leckie, S. Kramer, M. Rühle, and C. Levi, "Thermochemical Compatibility between Alumina and $ZrO_2-GdO_{3/2}$ Thermal Barrier Coatings," Acta Mater., 53 [11] 3281-92 (2005).   DOI
25 R. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 32 [5] 751-67 (1976).   DOI
26 C.-S. Kwon, S.-M. Lee, Y.-S. Oh, H.-T. Kim, B.-K. Jang, and S. Kim, "Preparation of Suspension in $La_2O_{3^-}Gd_2O_{3^-}ZrO_2$ System Via Planetary Mill and Characteristics of $(La_{1-X}Gd_X)_2Zr_2O_7$ Coatings Fabricated Via Suspension Plasma Spray (in Korean)," J. Kor. Powd. Metall. Inst., 20 [6] 453-59 (2013).   DOI
27 W. J. Lee, Y. S. Oh, S. M. Lee, H. T. Kim, D.-S. Lim, and S. Kim, "Fabrication and Characterization of 7.5 wt.% $Y_2O_{3^-}ZrO_2$ Thermal Barrier Coatings Deposited by Suspension Plasma Spray (in Korean)," J. Korean Ceram. Soc., 51 [6] 598-604 (2014).   DOI
28 C.-S. Kwon, S.-M. Lee, Y.-S. Oh, H.-T. Kim, B.-K. Jang, and S. Kim, "Structure and Thermal Conductivity of Thermal Barrier Coatings in Lanthanum/Gadolinium Zirconate System Fabricated Via Suspension Plasma Spray (in Korean)," J. Kor. Inst. Surf. Eng., 47 [6] 316-22 (2014).   DOI