• Title/Summary/Keyword: Thermal noise

Search Result 546, Processing Time 0.029 seconds

Acoustic modeling of an air cleaner filter in the engine intake system (자동차 흡기계 공기 여과기 필터의 음향학적 모델)

  • Ih, Jeong-Guon;Kang, Jang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.114-117
    • /
    • 2006
  • The air filter in engine intake system has a function of filtrating the dirt in the scavenging air as well as attenuating the noise. The noise attenuation within the air cleaner filter, however, has been regarded as negligible by the field engineers. In this paper, for the analysis of the acoustical performance of air filter, an acoustical model was suggested and the characteristics of air filter system were investigated. Fibrous structure of the filter element was modeled as a micro-perforated panel using the flow resistivity and porosity. The pleated geometry of the filter element was modeled as two coupled ducts that have permeable walls, in which each duct area was assumed being constant. Using such simplified geometry, a mathematical model was developed for the sound propagation within a narrow duct system. Visco-thermal effect was considered in modeling the sound propagation through such tubes; the filter box was modeled as a rigid rectangular box. By combining two models, a four-pole transfer matrix was derived. For the validation purpose, transmission loss was measured for a plastic rectangular box containing an air filter. A noticeable effect of the air filter element was observed by including the filter into the box. Comparing the predicted and measured data, we found that the predicted TL agrees well with experimental results, in particular, in magnitude and frequency at TL troughs.

  • PDF

Characteristics of Hybrid Optical Pickup Actuator at High Temperature (하이브리드형 광픽업 액추에이터의 고온특성)

  • Lee, Jin-Won;Kim, Kwang;Cheong, Young-Min;Kim, Dae-Whan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1010-1014
    • /
    • 2002
  • A new type actuator has been designed and investigated to overcome thermal problems in slim optical disc drive which is adopted in mobile storage devices. Recently, in optical storage device technical trends, the size of optical disc drives is slimmer to adopt notebook computer and the spindle rotate velocity is faster to achieve high transfer rate and the power of actuator is higher to perform tilting, etc. However, these trends of optical disc drives tend to raise the environment temperature of drives, actuator power and parts temperature. Moreover, it is more difficult to remove the heat inside a drive and the temperature of an actuator increases and drive slims. As a result, increase of surface temperature of actuator body caused that second resonance of an actuator moves down to a lower frequency band and the performance of optical parts also deteriorates. Especially objective lens, coil and magnet of the actuator parts are easily damaged. To manage these thermal problems, in this paper an actuator with a hybrid blade, which is composed of vectra which has low thermal conductivity and magnesium which has high thermal conductivity, has been suggested and verified. Despite the high temperature environment, the proposed actuator showed good dynamic performance.

  • PDF

Phase Error Variation of Timming Recovery Circuit in Optical Communication (광통신에서 타이밍 복원 회로의 위성 오차 변화)

  • 류흥균;안수길
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.3
    • /
    • pp.238-242
    • /
    • 1988
  • It is analyzed how performance of phase-locked loop driven by photodetector current in optical receiver will be changed under the condition that Gaussian thermal noise, pattern noise and shot noise are present and the loop has the nonzero detuning frequency. The phase error variance cahnges with the circuit configuration and the produced noise models. The analyzed results are applied to the previously implemented 90.194Mbps optic system whose loop filter is the improved active noninverting 1-st order lag-lead type.

  • PDF

Frequency Tracking Error Analysis of LQG Based Vector Tracking Loop for Robust Signal Tracking

  • Park, Minhuck;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.207-214
    • /
    • 2020
  • In this paper, we implement linear-quadratic-Gaussian based vector tracking loop (LQG-VTL) instead of conventional extended Kalman filter based vector tracking loop (EKF-VTL). The LQG-VTL can improve the performance compared to the EKF-VTL by generating optimal control input at a specific performance index. Performance analysis is conducted through two factors, frequency thermal noise and frequency dynamic stress error, which determine total frequency tracking error. We derive the thermal noise and the dynamic stress error formula in the LQG-VTL. From frequency tracking error analysis, we can determine control gain matrix in the LQG controller and show that the frequency tracking error of the LQG-VTL is lower than that of the EKF-VTL in all C/N0 ranges. The simulation results show that the LQG-VTL improves performance by 30% in Doppler tracking, so the LQG-VTL can extend pre-integration time longer and track weaker signals than the EKF-VTL. Therefore, the LQG-VTL algorithm is more robust than the EKF-VTL in weak signal environments.

Fabrication of Millimeter Wave Radiometer (밀리미터파 복사계의 제작)

  • Kim, Soon-Koo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.71-74
    • /
    • 2012
  • We have manufactured a close range Dicke type radiometer which consists of two stage low noise amplifier and diode detector. Frequency range of this system is 35 GHz. And this is used for studying temperature calibration on specific objects. We have present millimeter-wave radiometer's thermal calibration method and its characteristics. From absolute temperature 299K to 309K, in proportion to increase temperature, output voltages are linearly increased. In this case, undefined objects can be measured thermal noise temperature relatively. Overall from absolute temperature 214K to 309K, we have obtained relation of temperature and output voltage;V= 0.03601K - 10.70517.

Effect of Contact Stiffness on Lateral Force Calibration of Atomic Force Microscopy Cantilever (원자 현미경 탐침의 수평방향 힘 교정에 미치는 접촉 강성의 영향)

  • Tran, Da Khoa;Jeon, Ki-Joon;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.289-296
    • /
    • 2012
  • Atomic force microscopy (AFM) has been used for imaging surfaces and measuring surface forces at the nano-scale. Force calibration is important for the quantitative measurement of forces at the nano-scale using AFM. Normal force calibration is relatively straightforward, whereas the lateral force calibration is more complicated since the lateral stiffness of the cantilever is often comparable to the contact stiffness. In this work, the lateral force calibrations of the rectangular cantilever were performed using torsional Sader's method, thermal noise method, and wedge calibration method. The lateral optical lever sensitivity for the thermal noise method was determined from the friction loop under various normal forces as well. Experimental results showed that the discrepancies among the results of the different methods were as large as 30% due to the effect of the contact stiffness on the lateral force calibration of the cantilever used in this work. After correction for the effect of contact stiffness, all the calibration results agreed with each other, within experimental uncertainties.

Quantitative Lateral Force Calibration of V-shaped AFM Cantilever (V 형상을 가지는 원자현미경 Cantilever의 정량적 마찰력 교정)

  • Lee, Huijun;Kim, Kwanghee;Kim, Hyuntae;Kang, Boram;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.203-211
    • /
    • 2012
  • Atomic force microscopy (AFM) has been used as a tool, not only for imaging surfaces, but also for measuring surface forces and mechanical properties at the nano-scale. Force calibration is crucial for quantitatively measuring the forces that act between the AFM probe of a force sensing cantilever and a sample. In this work, the lateral force calibrations of a V-shaped cantilever were performed using the finite element method, multiple pivot loading, and thermal noise methods. As a result, it was shown that the multiple pivot loading method was appropriate for the lateral force calibration of a V-shaped cantilever. Further, through crosschecking of the abovementioned methods, it was concluded that the thermal noise method could be used for determining the lateral spring constants as long as the lateral deflection sensitivity was accurately determined. To obtain the lateral deflection sensitivity from the sticking portion of the friction loop, the contact stiffness should be taken into account.

Heat Resistant Electromagnetic Noise Absorber Films Using Poly(amide imide)/Soft Magnet Composite (내열성 전자기 노이즈 흡수 폴리(아미드-이미드)/연자성체 복합체 필름)

  • Han, Ji-Eun;Jeon, Byung-Kuk;Goo, Bon-Jae;Cho, Seung-Hyun;Kim, Sung-Hoon;Lee, Kyung-Sub;Park, Yun-Heum;Lee, Jun-Young
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.91-95
    • /
    • 2009
  • We fabricated the electromagnetic (EM) noise absorber films for high temperature use by blending a soft magnetic powder with poly(amide imide) (PAI). The EM noise absorber films of PAI/soft magnet composite were prepared by casting the solution of poly(amide amic acid)/soft magnet powder into glass substrate with casting applicator device and then thermal imidization. The obtained films were fully characterized and their physical properties including thermal behavior, thermal stability and mechanical properties were studied. The EM noise absorption ability was also investigated using micro-strip line method. At 1 GHz, the power loss of composite film with 150 ${\mu}m$ thickness was about 25%.

Non linearity Distortion Cancellation Module Design for Thermal Noise Compensation (열잡음 보상을 위한 비선형 왜곡제거 모듈 설계)

  • HwangBo, Chang;Ko, Young-Eun;Bang, Sung-Il
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.27-30
    • /
    • 2005
  • In this paper, we designed and manufactured the distortion cancellation module which is able to compensate thermal-noise distortion by software The distortion cancellation algorithm not only bring forth system non-linear distortion by input level but also bring compensate component of distortion by thermal to get rid off distortion from now on. After TMS320C6711 DSP to recognize our algorithm, we manufactured the module for every kinds of system To evaluate efficiency of the distortion cancellation module, we designed and manufactured communication system. By measured result, if system output power is -3dBm equally, 12dB of ACLR has improved in 1MHz away from a center frequency, and also gain has increased up to 0.5dB.

  • PDF

Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields (자기장 및 열하중을 받는 복합재료 원통셸의 진동해석)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.791-799
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT was performed through discretization of equations of motion and boundary condition. Structural model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations(Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence are investigated and pertinent conclusions are derived.