• Title/Summary/Keyword: Thermal mechanism

Search Result 1,228, Processing Time 0.026 seconds

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules

  • Kim, Seok-Il;Cho, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.32-37
    • /
    • 2007
  • The outer diameter finishing grinding process required for ferrules, which are widely used as fiber optic connectors, is carried out by high-precision centerless grinding machines. In this study, the thermal characteristics of such a machine, for example, the temperature distribution, temperature rise, and thermal deformation, were estimated based on a virtual prototype and the heat generation rates of heat sources related to normal operating conditions. The prototype consisted of a concrete-filled bed. hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The reliability of the predicted results was demonstrated using temperature characteristics measured from a physical prototype. The predicted and measured results indicated that this particular high-precision centerless grinding machine had very stable thermal characteristics.

Thermal Analysis of Electromagnet for SMART Control Element Drive Mechanism (SMART용 볼너트-스크류형 제어봉구동장치에 장착되는 전자석의 열해석)

  • Huh, Hyung;Kim, Ji-Ho;Kim, Jong-In
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.98-100
    • /
    • 1999
  • A thermal analysis was performed for the electromagnet which is installed in the control element drive mechanism(CEDM) of the integral reactor SMART. A model for the thermal analysis of the electromagnet was developed and theoretical bases for the model were established. It is important that the temperature of the electromagnet windings be maintained within the allowable limit of the insulation, since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. The thermal properties obtained here will be used as input for the optimization analysis of the electromagnet.

  • PDF

The Design, Fabrication, and Characteristic Experiment of Electromagnet to Control Element Drive Mechanism in System-Integrated Modular Advanced Reactor (일체형원자로 제어봉구동장치에 장착되는 전자석의 설계 및 특성해석)

  • 허형;김종인;김건중
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.147-147
    • /
    • 2003
  • This paper describes the finite element analysis(FEA) for the design of electromagnet for Control Element Drive Mechanism(CEDM) in System-integrated Modular Advanced Reactor(SMART) and compared with the lifting power characteristics of prototype electromagnet. A thermal analysis was performed for the electromagnet. A model for the thermal analysis of the electromagnet was developed and theoretical bases for the model were established. It is important that the temperature of the electromagnet windings be maintained within the allowable limit of the insulation. since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. As a result, it is shown that the characteristics of prototype electromagnet have a good agreement with the results of FEA. The thermal properties obtained here will be used as input for the optimization analysis of the electromagnet.

A Study on Improvement of the Thermal Stability for Development of Linear Motors with High Speed and Accuracy (고속.정밀 이송용 리니어모터 개발을 위한 열적 안정성 향상에 관한 연구)

  • Hwang, Young-Kug;Lee, Choon-Man;Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.126-133
    • /
    • 2008
  • Linear motors are efficient mechanism that offers high speed and positioning accuracy. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speed and greater acceleration can be achieved without backlash or excessive friction. However, an important disadvantage of linear motor system is its high power loss and heating up of motor and neighboring machine components on operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. This paper presents an investigation into the thermal behavior of linear motors with the objective of deriving the optimum cooling conditions. To reach these goals several experiments were carried out, varying operating and cooling conditions. From the experimental results, this research proposed cooling conditions to improve the thermal characteristics of the linear motors.

Damage Mechanism of Asphalt Concrete under Low Temperatures

  • Kim, Kwang-Woo;Yeon, Kyu-Seok;Park, Je-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.200-204
    • /
    • 1994
  • Low temperature associated damage mechanism is not well known for asphalt concrete. Many studies have related the thermal cracking of pavement in the roadway in cold region with overall shrinkage of the pavement surface under assumption of homogeneous material. This study, however, was intiated based on the assumption that thermal incompatibility of materials (heterogeneous) in asphalt concrete mixture would be the primary cause of the damages. Acoustic emission technique and microscopic obsevation were employed to evaluate damage mechanism of asphalt concrete due to low temperature. The first method showed the sufficient evidence that asphalt concrete could be damaged by lowered temperature only. The second method showed that the damage by temperature resulted in micro-cracks at the interface between asphalt matrix and aggregate particle. It was concluded that these damage mechanisms were the primary cause of major thermal cracking of asphalt pavement in cold region.

  • PDF

Study on the Failure Mechanism of a Chip Resistor Solder Joint During Thermal Cycling for Prognostics and Health Monitoring (고장예지를 위한 온도사이클시험에서 칩저항 실장솔더의 고장메커니즘 연구)

  • Han, Chang-Woon;Park, Noh-Chang;Hong, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.799-804
    • /
    • 2011
  • A thermal cycling test was conducted on a chip resistor solder joint with real-time failure monitoring. In order to study the failure mechanism of the chip resistor solder joint during the test, the resistance between both ends of the resistor was monitored until the occurrence of failure. It was observed that the monitored resistance first fluctuated linearly according to the temperature change. The initial variation in the resistance occurred at the time during the cycle when there was a decrease in temperature. A more significant change in the resistance followed after a certain number of cycles, during the time when there was an increase in the temperature. In order to explain the failure patterns of the solder joint, a mechanism for the solder failure was suggested, and its validity was proved through FE simulations. Based on the explained failure mechanism, it was shown that prognostics for the solder failure can be implemented by monitoring the resistance change in a thermal cycle condition.

Effect of $TiO_2$ in the Lead-Zinc-Borosilicate Solder Glass ($TiO_2$ 의 첨가가 Lead-Zinc-Borosilicate 봉착 유리에 미치는 영향)

  • 채수철;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.4
    • /
    • pp.349-354
    • /
    • 1984
  • The purpose of present study is to find the structure crystallization mechanism and physical properties in $TiO_2$ containing lead zinc borosilicate glass system. The experiments such as differential thermal analysis infrared spectral analysis. X-ray diffraction analysis and thermal expansion measurements have been done. Differential thermal analysis of coarse and fine glass powder showed bulk nucleating mechanism for high $TiO_2$ containing glasses and surface nucleation mechanism for low $TiO_2$ containing glasses. The prepared glasses crystallized to crystalline mixture of PbO.2ZnO. $B_2O_3$ .4PbO.2ZnO.$5B_2O_3$and 2PbO.ZnO.$B_2O_3$ when heat-treated in the range of 480 and 51$0^{\circ}C$ and crystallized to PbTiO3 when heat-treated at $600^{\circ}C$. Obtained crystalline phase of $PbTiO_3$ in glass matrix strongly affects to thermal expansion coefficient and the value of crystallized glass varied 68.0 to $107.1{\times}10-7$/$^{\circ}C$ depending on the amount of $TiO_2$added. Infrared spectral analysis showed that [$BO_3$] triangle and [$BO_3$] tetrahedral units were coexisted in the glass with high content of PbO.

  • PDF

Analysis of Temperature Reduction and Reflection Spectrum of Steel Plate according to Differential Thermal Mechanism of Solar Heat Paint (태양열 차단 도료의 차열 메카니즘에 따른 강판재의 온도저감 및 반사스펙트럼 분석)

  • Mun, Dong-Hwan;Lee, Kwang-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.37-38
    • /
    • 2017
  • In Infrared rays, which are 50% of sunlight, act as heat rays to heat buildings. Solar heat paint is widely used to protect buildings from sunlight. Solar heat coatings are used to block buildings form sunlight. Solar heat paints are classified as heat-reflective paints and heat-insulating paints according to the differential thermal mechanism. In this study, we study the thermal differential mechanism by analyzing the temperature change of the coated steel plate and the solar reflection spectrum on the surface. In this experiment, exposed steel plate, heat-reflective coated steel plate, heat-insulating coated steel plate, and general paint coated steel plate were used. As a result, when the infrared rays of 780nm ~ 1400nm were irradiated, the heat reflective paint had a temperature lower by 10 degrees than other paints. Analysis of the reflection spectrum of the paint shows that the heat paint is lower in heat than other paints because it has higher reflectance of light and absorbs much of the infrared rays.

  • PDF

Regularity and coupling correlation between acoustic emission and electromagnetic radiation during rock heating process

  • Kong, Biao;Wang, Enyuan;Li, Zenghua
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1125-1133
    • /
    • 2018
  • Real-time characterization of the rock thermal deformation and fracture process provides guidance for detecting and evaluating thermal stability of rocks. In this paper, time -frequency characteristics of acoustic emission (AE) and electromagnetic radiation (EMR) signals were studied by conducting experiments during rock continuous heating. The coupling correlation between AE and EMR during rock thermal deformation and failure was analyzed, and the microcosmic mechanism of AE and EMR was theoretically analyzed. During rock continuous heating process, rocks simultaneously produce significant AE and EMR signals. These AE and EMR signals are, however, not completely synchronized, with the AE signals showing obvious fluctuation and the EMR signals increasing gradually. The sliding friction between the cracks is the main mechanism of EMR during the rock thermal deformation and fracture, and the AE is produced while the thermal cracks expanding. Both the EMR and AE monitoring methods can be applied to evaluate the thermal stability of rock in underground mines, although the mechanisms by which these signals generated are different.

Effects of Insulation Layer upon the Thermal Behavior of Linear Motors

  • Eun, In-Ung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.896-905
    • /
    • 2003
  • A linear motor has many advantages next to conventional feed mechanisms: high transitional speed and acceleration, high control performance, and good positioning accuracy at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has a long lifetime, and is easy to assemble. A disadvantage of the linear motor is low efficiency and resultant high-temperature rise in itself and neighboring structures during operation. This paper presents the thermal behavior of the linear motor as a feed mechanism in machine tools. To improve the thermal behavior, an insulation layer is used. By placing the insulation layer between the primary part and the machine table, both the temperature difference and the temperature fluctuation in the machine table due to a varying motor load are reduced.