• Title/Summary/Keyword: Thermal gravimetric analysis

Search Result 154, Processing Time 0.032 seconds

CO2 sequestration and heavy metal stabilization by carbonation process in bottom ash samples from coal power plant

  • Ramakrishna., CH;Thriveni., T;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.74-83
    • /
    • 2017
  • Coal-fired power plants supply roughly 50 percent of the nation's electricity but produce a disproportionate share of electric utility-related air pollution. Coal combustion technology can facilitate volume reduction of up to 90%, with the inorganic contaminants being captured in furnace bottom ash and fly ash residues. These disposal coal ash residues are however governed by the potential release of constituent contaminants into the environment. Accelerated carbonation process has been shown to have a potential for improving the chemical stability and leaching behavior of bottom ash residues. The aim of this work was to quantify the volume of $CO_2$ that could be sequestrated with a view to reducing greenhouse gas emissions and stabilize the contaminated heavy metals from bottom ash samples. In this study, we used PC boiler bottom ash, Kanvera reactor (KR) slag and calcined waste lime for measuring chemical analysis and heavy metals leaching tests were performed and also the formation of calcite resulting from accelerated carbonation process was investigated by thermo gravimetric and differential thermal analysis (TG/DTA).

Analysis of Surface Tracking of Micro and Nano Size Alumina Filled Silicone Rubber for High Voltage AC Transmission

  • Loganathan, N.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.345-353
    • /
    • 2013
  • This paper discusses the experimental results in an effort to understand the tracking and erosion resistance of the micro and nano size $Al_2O_3$ filled silicone rubber (SIR) material which has been studied under the AC voltages, with ammonium chloride as a contaminant, as per IEC 60587 test procedures. The characteristic changes in the tracking resistance of the micro and nano size filled specimens were analyzed through leakage current measurement and the eroded masses were used to evaluate the relative erosion and tracking resistance of the composites. The fundamental, third and fifth harmonic of the leakage current during the tracking study were analyzed using moving average current technique. It was observed that the harmonic components of leakage current show good correlation with the tracking and erosion resistance of the material. The thermogravimetry-derivative thermo gravimetric (TG-DTG) studies were performed to understand the thermal degradation of the composites. The physical and chemical studies were carried out by using scanning electron microscope (SEM), Energy Dispersive X-ray analysis (EDAX) and Fourier Transform Infra-red (FTIR) Spectroscopy. The obtained result indicated that the performance of nano filled SIR was better than the micro filled SIR material when the % wt. of filler increased.

Characterization of Microcapsules for Self-Healing in Polymeric Composites

  • Lee Jong Keun;Hong Soon Ji;Liu Xing;Park Hee Won;Yoon Sung Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.190-193
    • /
    • 2004
  • Two different diene monomers [dicyclopentadiene (DCPD) and 5-ethylidene-2-norbomene (ENB)] as self­healing agent for polymeric composites were microencapsuled by in-situ polymerization of urea and formaldehyde. The healing agents were investigated by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Exothermic reaction and glass transition temperature from DSC and storage modulus (G') and tan $\delta$ from DMA curves were analyzed for the samples cured for 5 min and 24 h in the presence of different amounts of catalyst. Micorcapsules were successfully formed for both diene monomers. Microcapsules containing the healing agent were manufactured and its thermal properties were characterized by thermo gravimetric analysis (TGA). Optical microscope (OM) and particle size analyzer (PSA) were employed to observe morphology and size distribution of microcapsules, respectively. Comparison of the two self-healing agents and their microcapsules with the two was made in this study.

  • PDF

Slow Cook-Off Test and Evaluation for HTPE Insensitive Propellants (HTPE 둔감추진제 완속가열 시험평가)

  • Yoo, Ji-Chang;Kim, Chang-Kee;Kim, Jun-Hyung;Lee, Do-Hyung;Min, Byung-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • This study was carried out to investigate the thermal decomposition and execute EIDS slow cook-off test for the propellant ingredients and 2 kinds of HTPE propellants. The thermal analysis of the propellant ingredients used in this study showed that the thermal stability of these materials decreases in the following order : AP > HTPE > AN > BuNENA. In addition, propellant HTPE 002 containing AN showed that an endothermic process at around $125^{\circ}C$ corresponding to the solid phase change(II$\rightarrow$I) of AN was followed by the exothermic process of BuNENA/AN mixture up to $200^{\circ}C$. In EIDS slow cook-off tests, HTPE 001 and HTPE 002 reacted at around $250^{\circ}C$ and $152^{\circ}C$ respectively, and both of them showed sudden temperature increase curves at $115^{\circ}C$. The critical temperatures, $T_c$, of thermal explosion for the propellants HTPE 001 and HTPE 002, were obtained from both the non-isothermal curves at various heating rates and Semenov's thermal explosion theory. Kissinger's method that was used to calculate $T_c$ was also employed to obtain the activation energies for thermal decompositions.

Remediation of Petroleum-Contaminated Soil by a Directly-Heated Thermal Desorption Process (직접 가열식 열탈착 공정을 이용한 유류오염토양의 정화)

  • Min, Hyeong-Sik;Yang, In-Ho;Jeon, Sang-Jo;Kim, Han-S.
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.5
    • /
    • pp.62-70
    • /
    • 2009
  • A field soil highly contaminated with petroleum hydrocarbons (JP-8 and diesel fuels) was employed for its remediation by a lab-scale thermal desorption process. The soil was collected in the vicinity of an underground storage tank in a closed military base and its contamination level was as high as 4,476 ppm as total petroleum hydrocarbon (TPH). A lab scale directly-heated low temperature thermal desorption (LTTD) system of 10-L capacity was developed and operated for the thermal treatment of TPH contaminated soils in this study. The desired operation temperature was found to be approximately $200-300^{\circ}C$ from the thermal gravimetric analysis of the contaminated field soils. The removal efficiencies higher than 90% were achieved by the LTTD treatment at $200^{\circ}C$ for 10 min as well as at $300^{\circ}C$ for 5 min. As the water content in the soils increased and therefore they were likely to be present as lumps, the removal efficiency noticeably decreased, indicating that a pre-treatment such as field drying should be required. The analysis of physical and chemical properties of soils before and after the LTTD treatment demonstrated that no significant changes occurred during the thermal treatment, supporting no needs for additional post-treatments for the soils treated by LTTD. The results presented in this study are expected to provide useful information for the field application and verification of LTTD for the highly contaminated geo-environment.

The Influence of Hydrotalcite Intercalated with Benzoate on UV Stability of Acrylic Coating

  • Nguyen, Thuy Duong;Nguyen, Anh Son;Thai, Thu Thuy;Pham, Gia Vu;To, Thi Xuan Hang;Olivier, Marie-Georges
    • Corrosion Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.16-22
    • /
    • 2020
  • It is important to realize that benzoate was intercalated into hydrotalcite (HTC-Bz) by the co-precipitation method. In this case, acrylic coating with 0.5 wt% HTC-Bz was deposited on carbon steel using the spin coating method. Next, the HTC-Bz structure was characterized by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). In fact, an ultraviolet vision spectroscopy (UV-Vis) was used to determine the benzoate content in HTC-Bz, and the UV absorption ability of HTC-Bz. Using electrochemical techniques, water contact angle measurement, and thermal-gravimetric analysis, we compared the protective properties before and after QUV test, hydrophobicity and the thermal stability of acrylic coating containing HTC-Bz. The obtained results showed that HTC-Bz with a plate-like structure was successfully synthesized; benzoate was intercalated into the interlayer of hydrotalcite with a concentration of 28 wt%. Additionally, it was noted that HTC-Bz has an UV absorption peak at 225 nm. In conclusion, the addition of HTC-Bz enhanced the UV stability, hydrophobicity and the thermal stability of acrylic coating.

Preparation and Characterization of Swallow-Tail Terrylene Bisimide as Organic Phosphor (Swallow-Tail Terrylene Bisimide 적색 유기 형광체 제조 및 특성 연구)

  • Jung, Sung Bong;Jeong, Yeon Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.194-200
    • /
    • 2020
  • Perylene bisimide derivatives are developed for red organic phosphor because of their advantages, such as excellent luminous efficiency and high thermal stability. Despite these advantages, they have poor solubility characteristics in organic solvents and short emission wavelength as red organic phosphor for hybrid light-emitting diodes (LEDs). In this study, we prepared terrylene bisimide using a coupling reaction and swallow-tail imide group, which has excellent solubility. The structures and properties of swallow-tail terrylene bisimide (9C) were analyzed using 1H-nuclear magnetic resonance (1H-NMR), Fourier-transform infrared (FT-IR), UV/Vis spectroscopy, and thermal gravimetric analysis (TGA). The maximum absorption wavelength of (9C) in the UV/Vis spectrum was 647 nm, and the maximum emission wavelength was 676 nm. In the TGA, (9C) demonstrated good thermal stability with less than 5 wt% weight loss up to 415℃. In the solubility test, (9C) has a good solubility of more than 5 wt% in chloroform and dichloromethane. When the compounds (9C) were mixed with PMMA (polymethly methacrylate), the films showed peaks at 680 nm in the PL spectra. The results verify the suitability of (9C) as a red organic phosphor for hybrid LEDs.

Preparation of Spherical Energetic Composites by Crystallization/Agglomeration and their Thermal Decomposition Characteristics (결정화/응집 기법에 의한 구형 에너지 복합체 제조 및 그 열분해 특성)

  • Lee, Eun-Ae;Shim, Hong-Min;Kim, Jae-Kyeong;Kim, Hyoun-Soo;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.158-164
    • /
    • 2016
  • Spherical DADNE/AP (1,1-diamino-2,2-dinitroethylen/ammonium perchlorate) energetic composites were produced by drowning-out/agglomeration (D/A). The agglomeration of DADNE with AP particles was found to be affected by the amount of the bridging liquid, stirring velocity and residence time. The composites appeared to grow dramatically with the amount of bridging liquid which triggers agglomeration. As the stirring velocity and the residence time increased, the size of composites increased and then tended to decrease. Thermal gravimetric analysis showed that the addition of DADNE activates the low temperature decomposition (LTD) of AP. For the neat AP, the only about 30 wt% of AP was found to decompose at the LTD. On the other hand, it was found that 70 wt% of AP decomposed when DADNE was added by physical mixing and 90 wt% of AP decomposed when the DADNE/AP composites were prepared by the D/A method.

Synthesis of Crosslinked Polystyrene-b-Poly(hydroxyethyl methacrylate)-b-Poly(styrene sulfonic acid) Triblock Copolymer for Electrolyte Membranes

  • Lee, Do-Kyoung;Park, Jung-Tae;Roh, Dong-Kyu;Min, Byoung-Ryul;Kim, Jong-Hak
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.325-331
    • /
    • 2009
  • The synthesis and the characterization of crosslinked ABC triblock copolymer, i.e. polystyrene-b-poly (hydroxyethyl methacrylate)-b-poly(styrene sulfonic acid), (PS-b-PHEMA-b-PSSA) is reported. PS-b-PHEMA-b-PSSA triblock copolymer at 20:10:70 wt% was sequentially synthesized via atom transfer radical polymerization (ATRP). The middle block was crosslinked by sulfosuccinic acid (SA) via the esterification reaction between -OH of PHEMA and -COOH of SA, as demonstrated by FTIR spectroscopy. As increasing amounts of SA, ion exchange capacity (IEC) continuously increased from 2.13 to 2.82 meq/g but water uptake decreased from 181.8 to 82.7%, resulting from the competitive effect between crosslinked structure and the increasing concentration of sulfonic acid group. A maximum proton conductivity of crosslinked triblock copolymer membrane at room temperature reached up to 0.198 S/cm at 3.8 w% of SA, which was more than two-fold higher than that of Nafion 117(0.08 S/cm). Transmission electron microscopy (TEM) analysis clearly showed that the PS-b-PHEMA-b-PSSA triblock copolymer is microphase-separated with a nanometer range and well developed to provide the connectivity of ionic PSSA domains. The membranes exhibited the good thermal properties up to $250^{\circ}C$ presumably resulting from the microphase-separated and crosslinked structure of the membranes, as revealed by thermal gravimetric analysis (TGA).

Synthesis of New Spiro[benzo[c]fluorene-7,9'-fluorene] Dimers and Their Optical Properties

  • Seo, Jeong-A;Lee, Chil-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1414-1420
    • /
    • 2013
  • Five novel spiro[benzo[c]fluorene-7,9'-fluorene] based dyes, including 5-[spiro[benzo[c]fluorene-7,9'-fluoren]-5-yl] spiro[benzo[c]fluorene-7,9'-fluorene] (7), 5-[spiro[benzo[c]fluorene-7,9'-fluoren]-9-yl] spiro[benzo[c]fluorene-7,9'-fluorene] (8), 5-[spiro[benzo[c]fluorene-7,9'-fluoren]-2'-yl] spiro[benzo[c]fluorene-7,9'-fluorene] (9), 9-[spiro[benzo[c]fluorene-7,9'-fluoren]-9-yl] spiro[benzo[c]fluorene-7,9'-fluorene] (10), and 2'-[spiro[benzo[c]-fluorene-7,9'-fluoren]-2'-yl] spiro[benzo[c]fluorene-7,9'-fluorene] (11) were successfully prepared from the corresponding halogen and boronic acid derivatives through the Suzuki coupling reaction, respectively. Chemical structures were confirmed by $^1H$ nuclear magnetic resonance (NMR), $^{13}C$ NMR, Fourier transforminfrared spectrscopy, mass spectroscopy, and elemental analysis. The thermal properties were determined by differential scanning calorimetry and thermal gravimetric analysis. The relationships between the optical and electrochemical properties and the combined positions between these dimers were systematically investigated using UV-vis, photoluminescence (PL), and photoelectron spectroscopy. These five dimers exhibited high fluorescent quantum yields and good morphological stability with high glass transition states > $174^{\circ}C$. Dimer 7 showed a UV absorbance peak at 353 nm, emission PL peak at 424 nm, and quantum efficiency of 0.62 in a cyclohexane solution.