DOI QR코드

DOI QR Code

The Influence of Hydrotalcite Intercalated with Benzoate on UV Stability of Acrylic Coating

  • Nguyen, Thuy Duong (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Nguyen, Anh Son (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Thai, Thu Thuy (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Pham, Gia Vu (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • To, Thi Xuan Hang (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Olivier, Marie-Georges (Universite de Mons (UMONS), Faculty of Engineering, Materials Science Department)
  • Received : 2020.01.05
  • Accepted : 2020.02.05
  • Published : 2020.02.28

Abstract

It is important to realize that benzoate was intercalated into hydrotalcite (HTC-Bz) by the co-precipitation method. In this case, acrylic coating with 0.5 wt% HTC-Bz was deposited on carbon steel using the spin coating method. Next, the HTC-Bz structure was characterized by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). In fact, an ultraviolet vision spectroscopy (UV-Vis) was used to determine the benzoate content in HTC-Bz, and the UV absorption ability of HTC-Bz. Using electrochemical techniques, water contact angle measurement, and thermal-gravimetric analysis, we compared the protective properties before and after QUV test, hydrophobicity and the thermal stability of acrylic coating containing HTC-Bz. The obtained results showed that HTC-Bz with a plate-like structure was successfully synthesized; benzoate was intercalated into the interlayer of hydrotalcite with a concentration of 28 wt%. Additionally, it was noted that HTC-Bz has an UV absorption peak at 225 nm. In conclusion, the addition of HTC-Bz enhanced the UV stability, hydrophobicity and the thermal stability of acrylic coating.

Keywords

References

  1. P. Kotlik, K. Doubravova, J. Horalek, L. Kubac, and J. Akrman, J. Cult. Herit., 15, 44 (2014). https://doi.org/10.1016/j.culher.2013.01.002
  2. T. V. Nguyen, X. H. Le, P. H. Dao, C. Decker, and P. Nguyen-Tri, Prog. Org. Coat., 124, 137 (2018). https://doi.org/10.1016/j.porgcoat.2018.08.013
  3. D. Kotnarowska, Journal of Surface Engineered Materials and Advanced Technology, 8, 95 (2018). https://doi.org/10.4236/jsemat.2018.84009
  4. A. C. T. Cursino, F. da Lisboa, A. dos Pyrrho, V. P. de Sousa, and F. Wypych, J. Colloid Interf. Sci., 397, 88 (2013). https://doi.org/10.1016/j.jcis.2013.01.059
  5. Y. Li, L. Tang, X. Ma, X. Wang, W. Zhou, and D. Bai, J. Phys. Chem. Solids, 107, 62 (2017). https://doi.org/10.1016/j.jpcs.2017.02.018
  6. S. Li, Y. Shen, M. Xiao, D. Liu, L. Fa, and K. Wu, J. Ind. Eng. Chem., 20, 1280 (2014). https://doi.org/10.1016/j.jiec.2013.07.006
  7. H. Aziz and F. Ahmad, Prog. Org. Coat., 101, 431 (2016). https://doi.org/10.1016/j.porgcoat.2016.09.017
  8. A. M. E. Saeed, M. A. El-Fattah, and A. M. Azzam, Dyes Pigm., 121, 282 (2015). https://doi.org/10.1016/j.dyepig.2015.05.037
  9. N. Nuraje, S. I. Khan, H. Misak, and R. Asmatulu, ISRN Polymer Sci., 8 pages (2013).
  10. A. A. Marek, V. Verney, G. Totaro, L. Sisti, A. Celli, and F. Leroux, J. Solid State Chem., 268, 9 (2018). https://doi.org/10.1016/j.jssc.2018.08.026
  11. Q. Zhang, F. Leroux, P. Tang, D. Li, and Y. J. Feng, Polym. Degrad. Stab., 154, 55 (2018). https://doi.org/10.1016/j.polymdegradstab.2018.05.027
  12. H. Zhou, Z. Jiang, and S. Wei, Appl. Clay Sci., 153, 29 (2018). https://doi.org/10.1016/j.clay.2017.11.033
  13. U. Costantino, M. Curini, F. Montanari, M. Nocchetti, and O. Rosati, Micropor. Mesopor. Mat., 107, 16 (2008). https://doi.org/10.1016/j.micromeso.2007.05.010
  14. V. Rives, M. Arco, and C. Martin, Appl. Clay Sci., 88-89, 239 (2014). https://doi.org/10.1016/j.clay.2013.12.002
  15. J. Tedim, S. K. Poznyak, A. Kuznetsova, D. Raps, T. Hack, M. L. Zheludkevich, and M. G. S. Ferreira, ACS Appl. Mater. Interfaces, 2, 1528 (2010). https://doi.org/10.1021/am100174t
  16. B. Pilch-Piteraa, M. K˛edzierskib, E. Olejnikc, and S. Zapotoczny, Prog. Org. Coat., 95, 120 (2016). https://doi.org/10.1016/j.porgcoat.2016.03.009
  17. S. Aisawaa, C. Nakada, H. Hirahara, N. Takahashi, and E. Narita, Appl. Clay Sci., 180, 105205 (2019). https://doi.org/10.1016/j.clay.2019.105205
  18. S. M. Mohsin, M. Z. Hussein, S. H. Sarijo, S. Fakurazi, P. Arulselvan, and Y. H. Taufiq-Yap, J. Biomed Nanotechnol., 10, 1490 (2014). https://doi.org/10.1166/jbn.2014.1854
  19. S. B. Khan, C. Liu, E.S. Jang, K. Akhtar, and H. Han, Mater. Lett., 65, 2923 (2011). https://doi.org/10.1016/j.matlet.2011.03.107
  20. A. C. T. Cursino, J. E. F. C. Gardolinski, and F. Wypych, J. Colloid Interf. Sci., 347, 49 (2010). https://doi.org/10.1016/j.jcis.2010.03.007
  21. R. Ma, M. Zhao, Y. Mo, P. Tang, Y. Feng, and D. Li, Appl. Clay Sci., 180, 105196 (2019). https://doi.org/10.1016/j.clay.2019.105196
  22. X. Zhang, L. Zhou, H. Pi, S. Guo, and J. Fu, Polym. Degrad. Stabil., 102, 204 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.01.003
  23. T. D. Nguyen, T. X. H. To, J. Gervasi, Y. Paint, M. Gonon, and M.-G. Olivier, Prog. Org. Coat., 124, 256 (2018). https://doi.org/10.1016/j.porgcoat.2017.12.006
  24. T. D. Nguyen, T. X. H. To, A. Nicolay, Y. Paint, and M.-G. Olivier, Prog. Org. Coat., 101, 331 (2016). https://doi.org/10.1016/j.porgcoat.2016.08.021
  25. Y. Wang, and D. Zhang, Mater. Res. Bull., 46, 1963 (2011). https://doi.org/10.1016/j.materresbull.2011.07.021