• Title/Summary/Keyword: Thermal flow characteristics

Search Result 1,161, Processing Time 0.031 seconds

An Experimental Study on Flow Characteristics for Dual-Structured Orifice (이중구조 오리피스 팽창장치의 유동특성에 관한 실험적 연구)

  • 곽경민;김하덕;이중형;배철호;김종엽
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1039-1046
    • /
    • 2002
  • To investigate the characteristics of orifice as an expansion devices, the experimental apparatus was made and experiments are being peformed using R22 and R290. The main idea of this control method of refrigerant flow rate with coupled orifices is to control the ON/OFF state of T and Ball type orifice corresponding to the subdivided region of thermal load. When system requires minimum thermal load, both T and Ball type orifices are closed, but refrigerant can flow through small hole of T type orifice. In regular thermal load, when ball type orifice is closed, T type orifice is opened and mass flow rate increase more than OFF state of T type orifice, due to large diameter. In maximum thermal load, both T and Ball type orifices are open and the much refrigerant can flow. The flow characteristics on T type orifice and parallel-combined orifice are obtained in the subdivided region of thermal load.

Numerical Study on the Effect of Exhaust Flow Pattern under Real Running Condition on the Performance and Reliability of Closed-Coupled Catalyst (실 운전조건에서의 배기유동패턴이 근접장착 촉매변환기의 성능 및 신뢰성에 미치는 영향에 관한 수치적 연구)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.54-61
    • /
    • 2004
  • The engine-out flow is highly transient and hot, and may place tremendous thermal and inertial loads on a closed-coupled catalyst. Therefore, time-dependent and detailed flow and thermal field simulation may be crucial. The aim of this study is to develop combined chemical reaction and multi-dimensional fluid dynamic mathematical model and to study the effect of unsteady pulsating thermal and flow characteristics on thermal reliability of closed-coupled catalyst. The effect of cell density on the conversion performance under real running condition is also investigated. Unlike previous studies, the present study focuses on coupling between the problems of pulsating flow pattern and catalyst thermal response and conversion efficiency. The results are expressed in terms of temporal evolution of flow, pollutant and temperature distribution as well as transient characteristics of conversion efficiency. Fundamental understanding of the flow and thermal phenomena of closed-coupled catalyst under real running condition is presented. It is shown that instants of significantly low values of flow uniformity and conversion efficiency exist during exhaust blowdown and the temporal varaition of flow uniformity is very similar in pattern to one of conversion efficiency. It is also found that the location of hot spot in monolith is directly affected by transient flow pattern in closed-coupled catalyst.

Micro-Fabrication and Thermal Characteristics of a Thermal Mass Air Flow Sensor for Real-time Applications (고응답 열식 질량공기유량센서의 제작 및 열거동 특성)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.542-548
    • /
    • 2008
  • A thermal mass air flow sensor (MAFS), which consists of a micro-heater and thermo-resistive sensors on the silicon-nitride ($Si_3N_4$) thin membrane structure, is micro-fabricated by MEMS processes. Two thermo-resistive temperature sensors are located at $100{\mu}m$ upstream and downstream from the micro-heater respectively. The thermal characteristics are measured to find the best measurement indicator. The micro-heater is operated under constant power condition, and four flow indicators are investigated. The normalized temperature indicator shows good physical meaning and is easy to use in practice. It is found that the configurations and heating power of thermal-resistive elements are the dominant factors to determine the range of the flow measurement in the MAFS with higher sensitivity and accuracy.

Gravity Level Dependency of Gas-Liquid Two-Phase Flow

  • Choi, Bu-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.487-493
    • /
    • 2003
  • More reliable design of thermal transport. Power acquisition and thermal management systems requires the through understanding of the flow hydrodynamic. the differences and similarities between the two-phase flow characteristics of two-Phase flow influenced by the gravity levels. The data of flow Patterns, void fraction, frictional pressure drop associated with their characteristics were obtained at $\mu\textrm{g}$. 1g and 2g. Flow patterns and void fraction data obtained at three gravity levels were compared with each other and previous models and correlations.

A Study of Gas Dynamics of the High-Velocity Oxy-Fuel Thermal Spray Gun (HVOF 용사총의 기체역학에 관한 연구)

  • Cho, Pil-Jae;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.574-579
    • /
    • 2003
  • The present study addresses an analytical investigation to understand the characteristics of gas flow in the High-Velocity Oxy-Fuel(HVOF) thermal spray gun. One-dimensional analysis is extended to involve the effects of the wall friction and powder particle diameter. From the present analysis it is well known that the flow characteristics inside and outside the thermal spray gun is varied depending on the combustion chamber pressure. The thermal spray gun flow is characterized by six different patterns. The powder particle size and wall friction significantly influence the powder particle velocity. The particle velocity decreases with an increase in the powder particle size. This implies that the combustion chamber pressure should be increased to achieve a higher velocity of the powder particle.

  • PDF

Experimental Study on the Thermal Flow Stratification in a Horizontal Piping System (수평배관에서의 열유동 성층화현상에 대한 실험적 연구)

  • 김병주;이찬우;장원표
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.2064-2070
    • /
    • 1995
  • Characteristics of thermal flow stratification were studied experimentally by using the small scale pressurizer-surge line model. Thermal flow stratifications in the horizontal section of surge line were analyzed by the relation between the maximum temperature difference at any cross section in surge line and the Froude number representing the boundary conditions, i.e., in/out surge flow velocity and temperature difference of system. Thermal flow stratifications in outsurge flow decreased inversely proportional to the Froude number and did not exist for Fr>1. In insurge flow thermal flow stratifications disappeared near Fr=1.5, but resulted in the higher temperature difference than the case of outsurge flow.

Thermal and flow analysis for the optimization of a parallel flow heat exchanger (평행류 열교환기의 열.유동 해석 및 최적화)

  • Lee, Gwan-Su;Jeong, Ji-Wan;Yu, Jae-Heung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.229-239
    • /
    • 1998
  • The present paper examines the thermal and flow characteristics of a parallel flow heat exchanger and investigates the effects of the parameters on thermal performance by defining the flow nonuniformity. Thermal performance of a parallel flow heat exchanger is maximized by the optimization using Newton's searching method. The flow nonuniformity is chosen as an object function. The parameters such as the locations of separator, inlet, and outlet are expected to have a large influence on thermal performance of a parallel flow heat exchanger. The effect of these parameters are quantified by flow nonuniformity. The results show that the optimal locations of inlet and outlet are 19.73 mm and 10.9 mm, respectively. It is also shown that the heat transfer increases by 7.6% and the pressure drop decreases by 4.7%, compared to the reference model.

CFD ANALYSIS FOR THERMAL MIXING CHARACTERISTICS OF A FLOW MIXING HEADER ASSEMBLY OF SMART (SMART 유동혼합헤더집합체 열혼합 특성 해석)

  • Kim, Y.I.;Bae, Y.M.;Chung, Y.J.;Kim, K.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.84-91
    • /
    • 2015
  • SMART adopts, very unique facility, an FMHA to enhance the thermal and flow mixing capability in abnormal conditions of some steam generators or reactor coolant pumps. The FMHA is important for enhancing thermal mixing of the core inlet flow during a transient and even during accidents, and thus it is essential that the thermal mixing characteristics of flow of the FMHA be understood. Investigations for the mixing characteristics of the FMHA had been performed by using experimental and CFD methods in KAERI. In this study, the temperature distribution at the core inlet region is investigated for several abnormal conditions of steam generators using the commercial code, FLUENT 12. Simulations are carried out with two kinds of FMHA shapes, different mesh resolutions, turbulence models, and steam generator conditions. The CFD results show that the temperature deviation at the core inlet reduces greatly for all turbulence models and steam generator conditions tested here, and the effect of mesh refinement on the temperature distribution at the core inlet is negligible. Even though the uniformity of FMHA outlet hole flow increases the thermal mixing, the temperature deviation at the core inlet is within an acceptable range. We numerically confirmed that the FMHA applied in SMART has an excellent mixing capability and all simulation cases tested here satisfies the design requirement for FMHA thermal mixing capability.

Measurements of Thermal Characteristics for a Micro-Fabricated Thermal Mass Air Flow Sensor With Real-Time Controller (실시간 제어기를 이용한 마이크로 열식 질량공기 유량센서의 열특성 측정)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.573-579
    • /
    • 2009
  • A thermal mass air flow sensor, which consists of a micro-heater and thermal sensors on the silicon-nitride thin membrane structure, is micro-fabricated by MEMS processes. Three thermo-resistive sensors, one for the measurement of microheater temperature, the others for the measurement of membrane temperature upstream and downstream of the micro-heater respectively, are used. The micro-heater is operated under the constant temperature difference mode via a real time controller, based on inlet air temperature. Two design models for microfabricated flow sensor are compared with experimental results and confirmed their applicabilities and limitations. The thermal characteristics are measured to find the best flow indicator. It is found that two normalized temperature indicators can be adopted with some advantages in practice. The flow sensor with this control mode can be adopted for wide capability of high speed and sensitivity in the very low and medium velocity ranges.

A study on Characteristics of Heat Flow of Low Temperature Latent Thermal Storage System (저온 잠열 축열조내의 열유동 특성에 관한 연구)

  • Lee, W.S.;Park, J.W.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.33-43
    • /
    • 1999
  • The study on ice thermal storage system is to improve total system performance and increase the economical efficiency in actual all-conditioning facilities. To obtain the high charging and discharging efficiencies in ice thermal storage system, the improvement of thermal stratification is essential, therefore the process flow must be piston flow in the cylindrical type. With the relation of the aspect ratio(H/D) in the storage tank, the stratification is formed better as inlet flow rate is smaller. If the inlet and the outlet port are settled at the upside and downside of the storage tank, higher storage rate could be obtainable. In case that the flow directions inside the thermal storage tank are the upward flow in charging and the downward in discharging, thermal stratification is improved because the thermocline thickness is maitained thin and the degree of stratification increases respectively. In the charging process, in case of inlet flow rate the thermal stratification has a tendency to be improved with the lower flow rate and smaller temperature gradient in case of inlet temperature, the large temperature difference between inflowing water and storage water are influenced from the thermal conduction. The effect of the reference temperature difference is seen differently in comparison with the former study for chilled and hot water. In the discharging process, the thermal stratification is improved by the effect of the thermal stratification of the charging process.

  • PDF