• Title/Summary/Keyword: Thermal diode

Search Result 325, Processing Time 0.022 seconds

Heat Dissipation Analysis of 12kV Diode by the Packaging Structure (12kV급 다이오드의 패키징 구조에 따른 방열 특성 연구)

  • Kim, Nam-Kyun;Kim, Sang-Cheol;Bahng, Wook;Song, Geun-Ho;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1092-1095
    • /
    • 2001
  • Steady state thermal analysis has been done by a finite element method in a diode of 12kV blocking voltage. The diode was fabricated by soldering ten pieces of 1200V diodes in series, capping a dummy wafer at the far end of diode series, and finally wire bonded for building anode and cathode terminal. In order to achieve high voltage and reliability, the edge of each diode was beveled and passivated by resin with a thickness of 25${\mu}$m. It was assumed that the generated heat which is mainly by the on-state voltage drop, 9V for 12kV diode, is dissipated by way of the conduction through diodes layers to bonding wire and of the convection at the surface of passivating resin. It was predicted by the thermal analysis that the temperature rise of a pn junction of the 12kV diode can reach at the range of 16∼34$^{\circ}C$ under the given boundary conditions. The thickness and thermal conductivity(0.3∼3W/m-K) of the passivating resin did little effect to lower thermal resistance of the diode. As the length of the bonding wire increased, which means the distance of heat conduction path became longer, the thermal resistance increased considerably. The thermal analysis results imply that the generated heat of the diode is dissipated mainly by the conduction through the route of diode-dummy wafer-bonding wire, which suggests to minimize the length of the wire for the lowest thermal resistance.

  • PDF

Bypass Heat Sink Analysis for a Laser Diode Bar with a Top Canopy

  • Ji, Byeong-Gwan;Lee, Seung-Gol;Park, Se-Geun;O, Beom-Hoan
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.113-117
    • /
    • 2017
  • With the increasing use of high-power laser diode bars (LDBs) and stacked LDBs, the issue of thermal control has become critical, as temperature is related to device efficiency and lifetime, as well as to beam quality. To improve the thermal resistance of an LDB set, we propose and analyze a bypass heat sink with a top canopy structure for an LDB set, instead of adopting a thick submount. The thermal bypassing in the top-canopy structure is efficient, as it avoids the cross-sectional thermal saturation that may exist in a thick submount. The efficient thickness range of the submount in a typical LDB set is guided by the thermal resistance as a function of thickness, and the simulated bypassing efficiency of a canopy is higher than a simple analytical prediction, especially for thinner canopies.

Study on the Thermal Dissipation Characteristics of 16-chip LED Package with Chip Size (16칩 LED 패키지에서 칩 크기에 따른 방열특성 연구)

  • Lee, Min-San;Moon, Cheol-Hee
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.185-192
    • /
    • 2012
  • p-n junction temperature and thermal resistance of Light Emitting Diode (LED) package are affected by the chip size due to the change of the thermal density and the external quantum efficiency considering the heat dissipation through conduction. In this study, forward voltage was measured for two different size LED chips, 24 mil and 40 mil, which consist constitute 16-chip package. p-n junction temperature and thermal resistance were determined by thermal transient analysis, which were discussed in connection with the electrical characteristics of the LED chip and the structure of the LED package.

Heat Dissipation Analysis of High Voltage Diode Package for Microwave oven (전자레인지용 고압다이오드의 방열특성)

  • Kim, Sang-Cheol;Kim, Nam-Kyun;Bahng, Wook;Seo, Gil-Soo;Moon, Seoung-Ju;Oh, Bang-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.205-208
    • /
    • 2001
  • Steady state and transient thermal analysis has been done by a finite element method in a diode of 12kV blocking voltage for microwave oven. The diode was fabricated by soldering ten pieces of 1200V diodes in series, capping a dummy wafer at the far end of diode series, and finally copper wire bonded for building anode and cathode terminal. In order to achieve high voltage and reliability, the edge of each diode was beveled and passivated by resin and epoxy with a thickness of $25{\mu}m$ and $3700{\mu}m$, respectively. The chip size, thickness and material properties were very important factor for high voltage diode package. And also, thermal stress value was highest in the edge of diode and solder. So, design of edge in silicon was very important to thermal stress.

  • PDF

Heat Dissipation Analysis of High Voltage Diode Package for Microwave oven (전자레인지용 고압다이오드의 방열특성)

  • Kim, Sang-Cheol;Kim, Nam-Kyun;Bahng, Wook;Seo, Gil-Soo;Moon, Seoung-Ju;Oh, Bang-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.205-208
    • /
    • 2001
  • Steady state and transient thermal analysis has been done by a finite element method in a diode of 12kV blocking voltage for microwave oven. The diode was fabricated by soldering ten pieces of 1200V diodes in series, capping a dummy wafer at the far end of diode series, and finally copper wire bonded for building anode and cathode terminal. In order to achieve high voltage and reliability, the edge of each diode was beveled and passivated by resin and epoxy with a thickness of 25$\mu\textrm{m}$ and 3,700$\mu\textrm{m}$, respectively. The chip size, thickness and material properties were very important factor for high voltage diode package. And also, thermal stress value was highest in the edge of diode and solder. So, design of edge in silicon was very important to thermal stress.

  • PDF

Rapid Thermal Alloy of Fabricated Diode by Rapid Thermal Diffusion (고속 열확산에 의해 제작된 다이오드의 Rapid Thermal Alloy)

  • 이동엽;이영희
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.2
    • /
    • pp.63-67
    • /
    • 1992
  • Shallow $p^{+}-n,n^{+}-p$ diodes have been fabricated using rapid thermal diffusion by solid diffusion source and rapid thermal alloying with pure Aluminum. Diode area and junction depth are designed about 2.83$[\times}10^{-3}cm^{2}$ and 250nm, respectively. Electrical characteristics of $p^{+}-n$ diode show that the ideality factor is 1.04 and reverse current density is 29.3nA/$cm^{2}$, respectively. On the other hand, those of $n^{+}-p$ diode show that the ideality factor is 1.05 and reverse current density is 85.2pA/$cm^{2}$. The reverse currents are measured at 5V reverse bias after rapid thermal alloying for all the measurement.

  • PDF

An Experimental Study on the Thermal Performance of Air filled Thermal Diode during Transfer Process (공기를 작동 유체로 하는 열다이오드의 천이 과정중 열성능에 관한 실험적 연구)

  • 황인주;장영근;박이동;김철주
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.171-175
    • /
    • 1996
  • thermal diode is a device which allows heat to be transferred in one direction by convection due to difference of density of fluid. Vertical plate for heat collection and radiation are of utility for design of thermal diode. It was considered the transient process of air filled thermal diode with guide vane which combined rectangular and parallelogrammic shape enclosures. Gr was kept constantly on 1.60$\times$1010 and error range was $\pm$2% during the experiment. Nu was examined when inclined angle are 15$^{\circ}$and 45$^{\circ}$and, also the experiments was carried out with and without guide vane as well. Specially, The effect of guide vane was sensitive. Developed region inclined angle, which is characteristic of system.

  • PDF

Measurement of Micro Thermal Deformation of Optical Pick-up Base Using Holographic Interferometry (흘로그램 간섭계를 이용한 광픽업 베이스의 미소 열변형 측정)

  • 서영민;강신일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.191-194
    • /
    • 2002
  • In optical pick-up, optical components such as objective lens, collimator, mirror, laser diode and photo diode are mounted on the pick-up base. These components must keep their original position during operation for proper transmittance of information from laser diode to optical disk and back to photo diode. However, micro thermal deformation of pick-up base which is induced by thermal environment during operation can deteriorate the performance of optical pick-up. Therefore, it is important to measure and analyze the thermal deformation behavior of pick-up base under thermal environment. In the present study, a measurement system using holographic interferometry was designed to measure micro thermal deformation of pick up base. The measurement system was verified by using the deformation of cantilever with prescribed motion actuated by PZT with 1 nm resolution. Interferometric measurement was compared quantitatively with that induced by PZT actuator. Finally, micro thermal deformation of pick-up base under actual thermal environment was measured using the present holographic interferometry and the results were analysed.

  • PDF

Determination of the Dissociation Constant of Thymol Blue with Diode-Laser/Fiber-Optic Thermal Lensing Spectroscopy

  • 김성호;노영순
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.8
    • /
    • pp.822-824
    • /
    • 1998
  • The simple and convenient measurement of the dissociation constant of an indicator, thymol blue, was achieved by using a portable diode-laser/fiber-optic thermal lensing spectroscopy, which consisted of a visible diode laser, a photodiode, and an optical fiber. It gives comparable results to the cited value obtained from a conventional UV/VIS spectroscopy.

Thermoelastic analysis for a slab made of a thermal diode-like material

  • Darwish, Feras H.;Al-Nimr, Mohammad A.;Hatamleh, Mohammad I.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.645-659
    • /
    • 2015
  • This research investigates the thermoelastic transient behavior of a thermally loaded slab made of a thermal diode-like material which has two directional thermal conductivity values (low and high). Finite difference analysis is used to obtain the elastic response of the slab based on the temperature solutions. It is found that the rate of heat transfer through the thickness of the slab decreases with reducing the ratio between the low and high thermal conductivity values (R). In addition, reducing R makes the slab less responsive to the thermal load when heated from the direction associated with the low thermal conductivity value.