• 제목/요약/키워드: Thermal decomposition reactor

검색결과 101건 처리시간 0.029초

${\alpha}$-SAN 공중합체의 열분해 특성에 관한 연구 (A Study of Thermal Decomposition Characteristics of Poly(${\alpha}$-Methylstyrene-co-Acrylonitrile))

  • 김남석;설수덕;박근호;이내우;김덕술;이석희
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.84-90
    • /
    • 2005
  • Thermal decomposition of the copolymer of ${\alpha}$-Methylstyrene(AMS) with Acrylonitrile(AN) was investigated. The copolymer was synthesized in a continuous stirred tank reactor(CSTR) at $80^{\circ}C$ using toluene and benzoyl peroxide(BPO) as solvent and initiator, respectively. The reactor volume was 0.3 liters and residence time was 3 hours. The activation energy of thermal decomposition was in the ranges of $34{\sim}54$ kcal/mol for AMS with AN copolymer. The thermogravimetric trace curves were well agreed with the theoretical calculation.

비열플라즈마를 이용한 CF4 분해에 미치는 혼합가스의 영향 (Effect of Mixed Gases on Decomposition Characteristic of CF4 by Non-Thermal Plasma)

  • 박재윤;정장근;김종석;임근희
    • 한국전기전자재료학회논문지
    • /
    • 제15권6호
    • /
    • pp.543-550
    • /
    • 2002
  • In this paper, the $CF_4$ decomposition rate and by-product were investigated for two simulated plasma reactors which are metal particle reactor and spiral wire reactors as a function of mixed gases. The $CF_4$ decomposition rate by plasma reactor with metal particle electrode had a gain of 20~25% over that by plasma reactor with spiral wire electrode. The $CF_4$ decomposition efficiency increases with increasing applied voltage up to the critical voltage for spark formation. The $CF_4$ decomposition efficiency of metal particle reactor was about 80% at AC 24kV. The $CF_4$ decomposition rate used Ar-$N_2$ as base gas was the highest among three base gases of $N_2$, $Ar-N_2$, air. The by-products of the $N_2$, $N_2Ar$ base as were similar, but in case of air base they were different.

$CF_4$ 분해용 플라즈마 반응기의 방전 특성 (The discharge characteristic of plasma reactor for $CF_4$ decomposition)

  • 박재윤;정장근;김종석;이용길;김광태
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 춘계학술대회 논문집
    • /
    • pp.475-478
    • /
    • 2004
  • we studied the effect of the type of non-thermal plasma on the decomposition of $CF_4$. 3 types of reactors were manufactured to generate different types of plasma respectively, and went into the experiments. As the results, we found that high density of the energy of non-thermal plasma and the minimization of non-discharged area should be met in order to elevate decomposition rate of $CF_4$. Among the reactors used in the study, the hole-type reactor was such one that satisfying that requirement. Using the hole-type reactor, treatment efficiency for high concentration of $CF_4$ was excellent. We got decomposition rate of more than 95[%] between 500[ppm] around and less than 400[ppm], and up to 85[%] at 900[ppm].

  • PDF

Isothermal Decomposition of Ammonium Molybdate to Molybdenum Trioxide in a Fluidized Bed Reactor

  • Oh, Chang-Sup;Park, Yong-Ok;Hasolli, Naim;Kim, Hang Goo;Won, Yong Sun;Shin, Su-Been;Kim, Yong-Ha
    • 한국재료학회지
    • /
    • 제25권10호
    • /
    • pp.547-551
    • /
    • 2015
  • The present study prepared molybdenum trioxide ($MoO_3$), the most important intermediate of molybdenum metal, by using a fluidized bed reactor for the thermal decomposition of ammonium molybdate (AM) in the presence of an air flow. During the process of fluidizing the sample inside the reactor, the reaction time and temperature were optimized with a close analysis of the X-ray diffraction (XRD) data and with thermogravimetric analysis (TGA). In particular, the temperature level, at which the AM decomposition is completed, is very important as a primary operating parameter. The analysis of the XRD and TGA data showed that the AM decomposition is almost completed at ${\sim}350^{\circ}C$ with a reaction time of 30 min. A shorter reaction time of 10 min. required a higher reaction temperature of ${\sim}500^{\circ}C$ with the same air flow rate to complete the AM decomposition. A sharp rise in the decomposition efficiency at a temperature ranging between 320 and $350^{\circ}C$ indicated a threshold for the AM decomposition. The operating conditions determined in this study can be used for future scale-ups of the process.

천연가스 열분해법에 의한 수소 및 탄소 제조 (Production of Hydrogen and Carbon Black Using Natural Gas Thermal Decomposition Method)

  • 장훈;이병권;임종성
    • 청정기술
    • /
    • 제10권4호
    • /
    • pp.203-213
    • /
    • 2004
  • 천연가스의 열분해법은 천연가스 (CH4)를 고온에서 분해 시켜 수소와 탄소로 전환시키는 기술이다. 천연가스 열분해법의 가장 큰 장점은 이산화탄소의 발생 없이 수소와 탄소를 만드는 것이다. 본 연구에서는 이와같이 천연가스 고온 열분해법을 이용하여 메탄으로부터 수소와 탄소의 생성을 연구하였다. 실험을 통하여 메탄의 고온 열분해시 pyrocarbon이 반응관 내벽에 생성되며 그 위에 탄소가 퇴적되는 plugging 현상이 발생한다는 것을 알 수 있었다. 이 문제를 해결하기 위하여 본 연구에서는 이중관 반응기법, 반응 중간에 주기적으로 $O_2$$CO_2$로 퇴적된 탄소를 산화시키는 방법 등을 시도하였으며, 그 결과 어느 정도의 탄소 퇴적 현상을 해결할 수 있었다. 또한 SEM (Scanning Electron Microscope) image를 사용하여 탄소 입자의 크기를 측정하였으며 그 크기는 약 200 nm정도였다.

  • PDF

평판형 유전체 장벽 방전 반응기에서 Acetonitrile의 분해 특성 (Decomposition of Acetonitrile by Planar Type Dielectric Barrier Discharge Reactor)

  • 송영훈;김관태;류삼곤;이해완
    • 한국군사과학기술학회지
    • /
    • 제5권3호
    • /
    • pp.105-112
    • /
    • 2002
  • A combined process of non-thermal plasma and catalytic techniques has been investigated to treat toxic gas compounds in air. The treated gas in the present study is $CH_3$CN that has been known to be a simulant of toxic chemical agent. A planar type dielectric barrier discharge(DBD) reactor has been used to generate non-thermal plasma that produces various chemically active species, O, N, OH, $O_3$, ion, electrons, etc. Several different types of adsorbents and catalysts, which are MS 5A, MS 13X, Pt/alumina, are packed into the plasma reactor, and have been tested to save power consumption and to treat by-products. Various aspects of the present techniques, which are decomposition efficiencies along with the power consumption, by-product analysis, reaction pathways modified by the adsorbents and catalysts, have been discussed in the present study.

CaO를 첨가한 폐PVC전선의 열적분해 특성에 관한 연구 (A Study on the Thermal Decomposition Characteristics of Waste PVC Wire Added with CaO)

  • ;박호;권우택;이해평;오세천
    • 한국응용과학기술학회지
    • /
    • 제29권2호
    • /
    • pp.268-277
    • /
    • 2012
  • 폐 PVC전선의 열적분해 특성에 관한 연구를 TGA 및 고정층 반응기를 이용하여 연구하였다. 본 연구에서는 분해온도, 공기유량 및 CaO/ PVC의 비를 실험조건으로 고려하였으며, PVC전선의 열적분해과정에서 발생되는 염화수소 및 독성가스의 제거를 위한 CaO의 첨가에 대한 효과를 검증하기 위하여 PVC 전선의 열적분해 과정에서 생성되는 기상 생성물을 GC/MS를 이용하여 분석하였다. 또한 CaO의 첨가효과를 고찰하고자 액성 생성물에 대한 GC/MS을 함께 수행하였으며, 분해온도, 공기유량 및 CaO/PVC의 비에 따른 액상, 기상 및 고상 잔류물의 수율 변화를 함께 고찰하였다. 본 연구로부터 CaO의 첨가량이 증가할수록 PVC의 열적분해 과정에서 발생되는 염화수소의 제거량이 증가함을 확인하였다.

고온 불활성 기체 분위기에서 아산화질소 열분해 및 반응속도에 관한 연구 (A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas)

  • 이한민;윤재근;홍정구
    • 한국분무공학회지
    • /
    • 제25권3호
    • /
    • pp.132-138
    • /
    • 2020
  • N2O is hazardous atmosphere pollution matter which can damage the ozone layer and cause green house effect. There are many other nitrogen oxide emission control but N2O has no its particular method. Preventing further environmental pollution and global warming, it is essential to control N2O emission from industrial machines. In this study, the thermal decomposition experiment of N2O gas mixture is conducted by using cylindrical reactor to figure out N2O reduction and NO formation. And CHEMKIN calculation is conducted to figure out reaction rate and mechanism. Residence time of the N2O gas in the reactor is set as experimental variable to imitate real SNCR system. As a result, most of the nitrogen components are converted into N2. Reaction rate of the N2O gas decreases with N2O emitted concentration. At 800℃ and 900℃, N2O reduction variance and NO concentration are increased with residence time and temperature. However, at 1000℃, N2O reduction variance and NO concentration are deceased in 40s due to forward reaction rate diminished and reverse reaction rate appeared.

팩 베드 형상을 가지는 N2O 촉매 점화기의 열적현상 (Thermal Characteristics of an N2O Catalytic Ignitor with Packed-bed Geometry)

  • 유우준;김진곤;문희장;장석필
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.398-404
    • /
    • 2007
  • In this paper, thermal characteristics of a nitrous oxide ($N_2O$) catalytic reactor with packed-bed geometry are theoretically and numerically investigated. Several researchers experimentally presented that catalytic decomposition of $N_2O$ in a packed bed generates about 82kJ/mole in the exothermic reaction. Based on the results they have studied the catalytic decomposition of $N_2O$ in a packed bed to use it not only as a mono-propellant thrust for small satellites but also as an igniter system for hybrid rockets. So we aim to identify important parameters existing in an $N_2O$ packed-bed geometry, and to clarify its critical effect on thermal characteristics of the catalytic igniter using a porous medium approach.

평판형 유전체 장벽 방전 반응기에서 충진물질에 따른 아세토나이트릴의 분해 특성 (Decomposition of Acetonitrile Using a Planar Type Dielectric Barrier Discharge Reactor Packed with Adsorption and Catalyst Materials)

  • 김관태;송영훈;김석준
    • 한국대기환경학회지
    • /
    • 제19권2호
    • /
    • pp.157-165
    • /
    • 2003
  • A combined process of non-thermal plasma and catalytic technique has been investigated to treat $CH_3$CN gas in the atmosphere. A planar type dielectric barrier discharge (DBD) reactor has been used to generate the non-thermal plasma that produces various chemically active species, such as O, N, OH, $O_3$, ion, electrons, etc. Several different types of the beads. which are Molecular Sieve (MS) 5A, MS 13X, Pt/alumina beads, are packed into the DBD reactor, and have been tested to characterize the effects of adsorption and catalytic process on treating the $CH_3$CN gas in the DBD reactor. The test results showed that the operating power consumption and the amounts of the by-products of the non-thermal plasma process can be reduced by the assistance of the adsorption and catalytic process.