• Title/Summary/Keyword: Thermal damages

Search Result 133, Processing Time 0.03 seconds

Electrical Properties of Ultra-shallow$p^+-n$ Junctions using $B_{10}H_{14}$ ion Implantation ($B_{10}H_{14}$ 이온 주입을 통한 ultra-shallow $p^+-n$ junction 형성 및 전기적 특성)

  • 송재훈;김지수;임성일;전기영;최덕균;최원국
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Fabricated were ultra-shallow $p^+-n$ junctions on n-type Si(100) substrates using decaborane $(B_{10}H_{14})$ ion implantation. Decaborane ions were implanted at the acceleration voltages of 5 kV to 10 kV and at the dosages of $1\times10^{12}\textrm{cm}^2$.The implanted specimens were annealed at $800^{\circ}C$, $900^{\circ}C$ and $1000^{\circ}C$ for 10 s in $N_2$ atmosphere through a rapid thermal process. From the measurement of the implantation-induced damages through $2MeV^4 He^{2+}$ channeling spectra, the implanted specimen at the acceleration voltage of 15 kV showed higher backscattering yield than those of the bare n-type Si wafer and the implanted specimens at 5 kV and 10 kV. From the channeling spectra, the calculated thicknesses of amorphous layers induced by the ioin implantation at the acceleration voltages of 5 kV, 10 kV and 15 kV were 1.9 nm, 2.5 nm and 4.3 nm, respectively. After annealing at $800^{\circ}C$ for 10 s in $N_2$ atmosphere, most implantation-induced damages of the specimens implanted at the acceleration voltage of 10 kV were recovered and they exhibited the same channeling yield as the bare Si wafer. In this case, the calculated thickness of the amorphous layer was 0.98 nm. Hall measurements and sheet resistance measurements showed that the dopant activation increased with implantation energy, ion dosage and annealing temperature. From the current-voltage measurement, it is observed that leakage current density is decreased with the increase of annealing temperature and implantation energy.

FMD response cow hooves and temperature detection algorithm using a thermal imaging camera (열화상 카메라를 이용한 구제역 대응 소 발굽 온도 검출 알고리즘 개발)

  • Yu, Chan-Ju;Kim, Jeong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.292-301
    • /
    • 2016
  • Because damages arising from the occurrence of foot-and-mouth disease (FMD) are very great, it is essential to make a preemptive diagnosis to cope with it in order to minimize those damages. The main symptoms of foot-and-mouth disease are body temperature increase, loss of appetite, formation of blisters in the mouth, on hooves and breasts, etc. in a cow or a bull, among which the body temperature check is the easiest and quickest way to detect the disease. In this paper, an algorithm to detect FMD from the hooves of cattle was developed and implemented for preemptive coping with foot-and-mouth disease, and a hoof check test is conducted after the installation of a high-resolution camera module, a thermo-graphic camera, and a temperature/humidity module in the cattle shed. Through the algorithm and system developed in this study, it is possible to cope with an early-stage situation in which cattle are suspected as suffering from foot-and-mouth disease, creating an optimized growth environment for cattle. In particular, in this study, the system to cope with FMD does not use a portable thermo-graphic camera, but a fixed camera attached to the cattle shed. It does not need additional personnel, has a function to measure the temperature of cattle hooves automatically through an image algorithm, and includes an automated alarm for a smart phone. This system enables the prediction of a possible occurrence of foot-and-mouth disease on a real-time basis, and also enables initial-stage disinfection to be performed to cope with the disease without needing extra personnel.

Turbine Rotor-Pyrostarter Coupled Test for the Verification of Thermo-Structural Suitability of a Turbopump Turbine (터보펌프 터빈의 열구조적 적합성 검증을 위한 터빈로터-파이로시동기 연계시험)

  • Jeong, Eunhwan;Kang, Sang Hun;Hong, Moongeun;Lee, Hanggi;Lee, Soo Yong;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.65-72
    • /
    • 2014
  • Turbine rotor-pyrostarter coupled test was performed for the verification of thermo-structural suitability of a turbopump turbine. Newly developed solid propellant and design concept were used in pyrostarter development. In case of turbine rotor, rotor configuration modification and post EDM machining process are adopted in rotor manufacturing respectively for the thermal stress relief and the surface integrity improvement on the blade surfaces. In the test, combustion gas of pyrostarter was directly ejected from the nozzles and impinged on the stationary turbine rotor specimen through the identically shaped flow passage of turbopump. Three kind of thermal load - design to extreme condition - test were performed and no damages were found on the turbine rotor specimens.

Thermal Characteristics of Eire-Protection Aqueous Film Forming Foams for Various Expansion Ratios (소방용 수성막 폼의 비체적 변화에 따른 열적 특성 연구)

  • Kim Hong-Sik;Kim Youn-Jea;Hwang In-Ju
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • In order to evaluate the performance of fire-protection foams used to protect structures from heat and fire damages, the thermal characteristics of them are experimentally investigated. This research focuses on the destruction of a fire-fighting foam subjected to heat radiation. A simple repeatable test apparatus for fire-protection foams subjected to fire radiation is developed. It involves a foam generation equipment, a fire source for heat generation, repeatable test procedures, and data acquisition techniques. Results of the experimental procedure indicated that each thermocouple within the foam responded in a similar manner and gradually to a temperature of 115℃~20℃. At this point, each trace generally rises to a temperature of approximately 90℃. The temperature gradient in the foam as time passes increases with increasing the foam expansion ratio. In addition, it is found that the temperature gradient along the foam for depth decreases with increasing the foam expansion ratio.

Research on the Relationship between Thermoelectric Module with Defects and Thermal Performances (열전소자 내부 층간 결함과 열성능 관계에 관한 연구)

  • Choi, Choul-Jun;Gao, Jia-Chen;Kim, Jae-Yeol;Jung, Yoon-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.125-133
    • /
    • 2016
  • From the first application of a thermoelectric module to nowtoday, it has been more than half a century. The application of a thermoelectric module is becoming more and more widely accepted since, people's requirement rely more and more on the efficiency of thermoelectric modules and their reliability become higher and higher. So people pay more and more attention to the thermoelectric module. In Around the world, the more research for into improving the efficiency of thermoelectric modules is focused on the current materials. at present. However, the research of into available materials had has some limitations, and the research of materials had reached a bottleneckthere are limits to current applications. On the other hand, from the production process, if we assembled by materials withoutmodules without any damages and achieve the ideal state of a joint, we can make the a product to maximize performance and have a longer service life. SoTherefore, in this study we will prove the relationship between the any defects inside and the efficiency of a thermoelectric module to improve the quality management and performance of modern thermoelectric modules at present.

Investigation on Behaviors of Concrete Interfaces Repaired Using Anchors (앵커로 보수한 콘크리트 계면 거동의 고찰)

  • Song Hyung-Soo;Lee Chin-Yong;Yoon Dong-Yong;Min Chang-Shik;Choi Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.885-892
    • /
    • 2005
  • Recently, the damaged concrete structures are often strengthened or repaired using the polymer concrete or the polymer cement mortar. In the repaired concrete structures at early ages, internal stresses could be developed due to the differential drying shrinkage of the repair material. Due to the difference of the thermal coefficients of the repair material and existing concrete, additional stresses also could be developed as the structures are subjected to the ambient temperature changes. Theses environmentally-induced stresses can sometimes be large enough to cause damage to the structures, such as debonding of the interface between the two materials. In this study, a rational procedure was developed where anchors can be designed and installed to prevent damages in such structures by thermally-induced stresses. Finally, through the experimental study and numerical study, the effects of the repair method using anchors with debonding was investigated and discussed the results.

Implementation and Measurement of Protection Circuits for Step-down DC-DC Converter Using 0.18um CMOS Process (0.18um CMOS 공정을 이용한 강압형 DC-DC 컨버터 보호회로 구현 및 측정)

  • Song, Won-Ju;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.265-271
    • /
    • 2018
  • DC-DC buck converter is a critical building block in the power management integrated circuit (PMIC) architecture for the portable devices such as cellular phone, personal digital assistance (PDA) because of its power efficiency over a wide range of conversion ratio. To ensure a safe operation, avoid unexpected damages and enhance the reliability of the converter, fully-integrated protection circuits such as over voltage protection (OVP), under voltage lock out (UVLO), startup, and thermal shutdown (TSD) blocks are designed. In this paper, these three fully-integrated protection circuit blocks are proposed for use in the DC-DC buck converter. The buck converter with proposed protection blocks is operated with a switching frequency of 1 MHz in continuous conduction mode (CCM). In order to verify the proposed scheme, the buck converter has been designed using a 180 nm CMOS technology. The UVLO circuit is designed to track the input voltage and turns on/off the buck converter when the input voltage is higher/lower than 2.6 V, respectively. The OVP circuit blocks the buck converter's operation when the input voltage is over 3.3 V, thereby preventing the destruction of the devices inside the controller IC. The TSD circuit shuts down the converter's operation when the temperature is over $85^{\circ}C$. In order to verify the proposed scheme, these protection circuits were firstly verified through the simulation in SPICE. The proposed protection circuits were then fabricated and the measured results showed a good matching with the simulation results.

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.

Analytical Investigations on the Figures of Meander Lines on the YBCO Thin Film for Resistive Fault Current Limiters (YBCO 박막형 저항형 한류기에 적용 가능한 Meander Line 해석 연구)

  • 이방욱;강종성;박권배;오일성;현옥배
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.221-224
    • /
    • 2002
  • Superconducting electrical devices are under development in a national project in Korea. And KEPCO and LGIS are in charge of development of a resistive type fault current limiters(FCLs) with YBCO thin films. In order to realize FCLs, the rated power of FCLs must be increased. For this purpose, it is of great interest to increase of allowed voltage of unit component without electrical and thermal damages. So, meander lines were widely used for the conducting path to increase maximum electric field. In this research, numerical simulations on the electromagnetic behaviors of the device were carried out, especially focusing on the effect of meander line structures on the YBCO thin films. To evaluate the structures of meander lines, three types of meander lines were considered for numerical analysis using finite element method (FEM). In this simulation, both normal state and fault conditions were considered for calculation of electric field, current density, magnetic field density. And the simulation resulted are compared to find the optimum design of meander lines for resistive FCLs.

  • PDF

The Evaluation of Mechanical Property of X20CrMoV12.1 Boiler Tube Steels (X20CrMoV12.1강의 열화에 따른 기계적특성 평가)

  • Kim, B.S.;Lee, S.H.;Kim, D.S.;Jung, N.G.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.18-22
    • /
    • 2004
  • Boiler is one of the most important utilities providing steam to turbine in order to supply mechanical energy in thermal power plant. It is composed of thousands of tubes for high efficient heat transfer. The material for boiler tubes is used in such high temperature and pressure condition as $540^{\circ}C$, 22MPa. The boiler tube material is required to resist creep damage, fatigue cracking, and corrosion damages. 2.25%Cr-1Mo steel is used for conventional boiler tubes, and austenitenite stainless steel is used for higher temperature boiler tubes. But the temperature and pressure of steam in power plant became higher for high plant efficiency. So, the property of boiler tube material must be upgaded to fit the plant property. Several boiler tube material was developed to fit such conditions. X20CrMoV12.1 steel is also developed in 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensite microstructures which is difficult to evaluate the degradation. In this thesis, degrade the X20CrMoV12.1 steel at high temperatures in electric furnace, and evaluate hardness with Vickers hardness tester and strengths with Indentation tester.

  • PDF