• Title/Summary/Keyword: Thermal damage

Search Result 920, Processing Time 0.027 seconds

Service Life Analysis of Control Valve far Automatic Turbine Startup of Thermal Power Plant (화력 발전소 증기 터빈의 자동기동을 위한 주증기 제어 밸브 수명해석)

  • Kim, Hyo-Jin;Gang, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The automatic turbine startup system provides turbine control based on thermal stress. During the startup, control system monitors and evaluates main components of turbine using damage mechanism and life assessment. In case of valve chest, the temperature of inner/outer wall is measured by thermo-couples and the safety of these values are evaluated by using allowable △T limit currie during the startup. Because allowable ΔT limit curve includes life assessment, it is possible to apply this curve to turbine control system. In this paper, low cycle fatigue damage, combined rupture and low cycle fatigue damage criterion were proposed for yielding the allowable ΔTf limit curve of CV(control valve) chest. To calculate low cycle fatigue damage, the stress analysis of valve chest has been performed using FEM. Automatic turbine startup to assure service life of CV was achieved using allowable ΔT limit curve.

Assessment of Fatigue and Fracture on a Tee-Junction of LMFBR Piping Under Thermal Striping Phenomenon

  • Lee, Hyeong-Yeon;Kim, Jong-Bum;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.267-275
    • /
    • 1999
  • This paper deals with the industrial problem of thermal striping damage on the French prototype fast breeder reactor, Phenix and it was studied in coordination with the research program of IAEA. The thermomechanical and fracture mechanics evaluation procedure of thermal striping damage on the tee-junction of the secondary piping using Green's function method and standard FEM is presented. The thermohydraulic(T/H) loading condition used in the present analysis is the random type thermal loads computed by T/H analysis on the turbulent mixing of the two flows with different temperatures. The thermomechanical fatigue damage was evaluated according to ASME code section 111 subsection NH. The results of the fatigue analysis showed that fatigue failure would occur at the welded joint within 90,000 hours of operation. The assessment for the fracture behavior of the welded joint showed that the crack would be initiated at an early stage in the operation. It took 42,698.9 hours for the crack to propagate up to 5 mm along the thickness direction. After then, however, the instability analysis, using tearing modulus, showed that the crack would be arrested, which was in agreement with the actual observation of the crack. An efficient analysis procedure using Green's function approach for the crack propagation problem under random type load was proposed in this study. The analysis results showed good agreement with those of the practical observations.

  • PDF

Thermal aging of Gr. 91 steel in supercritical thermal plant and its effect on structural integrity at elevated temperature

  • Min-Gu Won;Si-Hwa Jeong;Nam-Su Huh;Woo-Gon Kim;Hyeong-Yeon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this study, the influence of thermal aging on structural integrity is investigated for Gr. 91 steel. A commercial grade Gr. 91 steel is used for the virgin material, and service-exposed Gr. 91 steel is sampled from a steam pipe of a super critical plant. Time versus creep strain curves are obtained through creep tests with various stress levels at 600 ℃ for the virgin and service-exposed Gr. 91 steels, respectively. Based on the creep test results, the improved Omega model is characterized for describing the total creep strain curve for both Gr. 91 steels. The proposed parameters for creep deformation model are used for predicting the steady-state creep strain rate, creep rupture curve, and stress relaxation. Creep-fatigue damage is evaluated for the intermediate heat exchanger (IHX) in a large-scale sodium test facility of STELLA-2 by using creep deformation model with proposed creep parameters and creep rupture curve for both Gr. 91 steels. Based on the comparison results of creep fatigue damage for the virgin and service-exposed Gr. 91 steels, the thermal aging effect has been shown to be significant.

Force Modeling and Machining Characteristics of the Intermittent Grinding Wheels

  • Kwak, Jae-Seob;Ha, Man-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.351-356
    • /
    • 2001
  • In the surface grinding operations, the grinding fluid cannot be supplied sufficiently in the cutting zone. Temperature generated in the cutting zone increases rapidly and causes thermal damage such as burning on the surface of a workpiece. To reduce thermal damage, the intermittent grinding wheels, which have an excellent cooling effect, have been applied. This paper describes machining characteristics by using intermittent grinding wheels. The grinding force of the intermittent wheels has been simulated by the SIMULAB, which is a program for simulating dynamic systems. Using the intermittent grinding wheels, the characteristics of grinding force, temperature, surface roughness, and geometric error have been evaluated experimently.

  • PDF

Cavitation Damage Behavior of Inconel 625 Coating Layer by Arc Thermal Spraying Method in Sea Water (아크 용사법을 이용한 Inconel 625 코팅 층의 해수 내 캐비테이션 손상 거동)

  • Park, Il-Cho;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.349-353
    • /
    • 2015
  • In this paper, arc thermal spray coating was conducted onto the SS400 steel using Inconel 625 wires in order to improve the durability of marine steel structures, and then investigated cavitation damage behavior of Inconel 625 coating layer in sea water. For the Inconel 625 coating layer, surface hardness appeared similar to that of existing high velocity oxy-fuel coating technology with 380~480 HV, but the porosity of about 6 % was larger relatively. During the cavitation experiment, pit damages were originated and grown at the rough surface and pore defect area of Inconel 625 coating layer. And, after the 72 hours of experimental time, weight loss of Inconel 625 coating layer exhibited gradually increasing tendency due to surface damage effect of the undercut.

Investigation of the Contributions of Creep and Thermal Fatigue to Failure of a High-Intermediate Pressure Steam Turbine Casing

  • Lee, Jaehong;Jung, Nam-gun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.1
    • /
    • pp.41-47
    • /
    • 2020
  • The contribution of damage mechanisms to failure of steam turbine casing made of Cr-Mo-V steel was investigated. Creep-fatigue interaction on the HP side corner of turbine casing was revealed as the root cause of the catastrophic failure performed by metallurgical analysis. The steady-state pressure and transient thermal stress were analyzed based on the actual operating condition of the thermal plant. Damage of creep-fatigue interaction to crack initiation was evaluated with multiaxial effects. The contribution ratio of creep and fatigue to the crack initiation was estimated to 3:1. Temporary geometrical correct action with repair weld was executed. For long-term operation, design improvement of casing equipment for creep resistance should be needed.

A Study on the Thermal Flux Estimation of Fireball (Fireball로 인한 Thermal flux 예측에 관한 연구)

  • Kim In-Tae;Kim In-Won;Song Hee-Oeul
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.46-52
    • /
    • 2000
  • In order to evaluate the risk assessment of Fireball, a program, FIRESTOR, was developed. With this program, thermal fluxes due to the fireball of propane and n-butane were predicted to analyze the damage of Puchen gas explosion accident and thermal fluxes compared with the BLEVE ESTIMATOR, and commercial program SAFER Dupont Co. Thermal fluxes with variation of distance from the explosion source by BLEVE ESTIMATOR, SAFER and FIRESTOR was made a comparative analysis each other for the constant pressure of propane and n-butane. The values calculated by FIRESTOR were between those by BLEVE ESTIMATOR and SAFER. Consequently FIRESTOR is proved to be an good program to analyze the damage of Fireball.

  • PDF

Analysis of thermal and damage effects over structural modal parameters

  • Ortiz Morales, Fabricio A.;Cury, Alexandre A.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • Structural modal parameters i.e. natural frequencies, damping ratios and mode shapes are dynamic features obtained either by measuring the vibration responses of a structure or by means of finite elements models. Over the past two decades, modal parameters have been used to detect damage in structures by observing its variations over time. However, such variations can also be caused by environmental factors such as humidity, wind and, more importantly, temperature. In so doing, the use of modal parameters as damage indicators can be seriously compromised if these effects are not properly tackled. Many researchers around the world have found numerous methods to mitigate the influence of such environmental factors from modal parameters and many advanced damage indicators have been developed and proposed to improve the reliability of structural health monitoring. In this paper, several vibration tests are performed on a simply supported steel beam subjected to different damage scenarios and temperature conditions, aiming to describe the variation in modal parameters due to temperature changes. Moreover, four statistical methodologies are proposed to identify damage. Results show a slightly linear decrease in the modal parameters due to temperature increase, although it is not possible to establish an empirical equation to describe this tendency.

Characteristics of Damage on Photosensor Irradiated by Intense Illumination : Thermal Diffusion Model (고섬광에 노출된 광센서의 손상 특성 : 열확산 모델)

  • Kwon, Chan-Ho;Shin, Myeong-Suk;Hwang, Hyon-Seok;Kim, Hong-Lae;Kim, Seong-Shik;Park, Min-Kyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.201-207
    • /
    • 2012
  • Pulsed lasers at the 613 nm and 1064 nm wavelengths on nanoseconds have been utilized to characterize the damage on Si photodiode exposed to intense illumination. Morphological damages and structural changes at sites on the photodiode irradiated during microseconds of laser pulses were analyzed by FE-SEM images and XRD patterns, respectively. The removal of oxide coating, ripple, melting marks, ridges, and crater on photodiodes were definitely observed in order of increasing the pulse intensities generated above the damage threshold. Then, the degradation in photosensitivity of the Si photodiode irradiated by high power density pulses was measured as a function of laser irradiation time at the various wavelengths. The free charge carrier and thermal diffusion mechanisms could have been invoked to characterize the damage. The relative photosensitivity data calculated using the thermal diffusion model proposed in this paper have been compared with the experimental data irradiated above the damage threshold.

Effects of Various Light Spectra on Physiological Stress and DNA Damage by Thermal Stress in Juvenile Rock Bream (Oplegnathus fasciatus)

  • Choe, Jong Ryeol;Shin, Yoon Sub;Choi, Ji Yong;Kim, Tae Hwan;Kim, Daehee;Choi, Cheol Young
    • Ocean and Polar Research
    • /
    • v.39 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • In this study, we investigated the effects of light spectra on physiology stress and DNA damage in juvenile rock bream (Oplegnathus fasciatus) using light-emitting diodes (LEDs; green, 520 nm; red, 630 nm) at two intensities (0.25 and $0.5W/m^2$ ) with application of thermal stress (25 and $30^{\circ}C$). We measured the mRNA expression of heat shock protein 70 (HSP70) and the levels of plasma cortisol, glucose, aspartate aminotransferase (AspAT), and alanine aminotransferase (AlaAT). Additionally, DNA damage was measured using comet assays. Our findings showed that HSP70 mRNA expression and plasma cortisol, glucose, AspAT, and AlaAT levels were significantly higher after exposure to high temperatures and were significantly lower after exposure to green LED light. Thus, although high water temperatures induced stress in juvenile rock bream, green LED light inhibited stress. In particular, green LED light reduced stress and DNA damage to a greater degree than other light sources.