• Title/Summary/Keyword: Thermal crack

Search Result 738, Processing Time 0.031 seconds

A Study on the Thermal Crack Control of Tunnel Lining Concrete due to the Overbreak (과다 여굴에 따른 터널 라이닝콘크리트의 온도균열 제어 연구)

  • 장동일;채원규;조광현;김광일;손영현
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.05a
    • /
    • pp.215-220
    • /
    • 1998
  • 터널공사에서는 지산의 강도에 따라 선정된 굴착공법을 이용하여 굴착 된 단면에는 굴삭된 터널의 안전과 시공상 능률을 증진시키고, 장기간에 걸친 터널의 사용에 대한 충분한 신뢰성을 갖추기 위하여 지지공$\cdot$라이닝콘크리트 등이 설치된다. (중략)

  • PDF

Stress Evolution with Annealing Methods in SOI Wafer Pairs (열처리 방법에 따른 SOI 기판의 스트레스변화)

  • Seo, Tae-Yune;Lee, Sang-Hyun;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.820-824
    • /
    • 2002
  • It is of importance to know that the bonding strength and interfacial stress of SOI wafer pairs to meet with mechanical and thermal stresses during process. We fabricated Si/2000$\AA$-SiO$_2$ ∥ 2000$\AA$-SiO$_2$/Si SOI wafer pairs with electric furnace annealing, rapid thermal annealing (RTA), and fast linear annealing (FLA), respectively, by varying the annealing temperatures at a given annealing process. Bonding strength and interfacial stress were measured by a razor blade crack opening method and a laser curvature characterization method, respectively. All the annealing process induced the tensile thermal stresses. Electrical furnace annealing achieved the maximum bonding strength at $1000^{\circ}C$-2 hr anneal, while it produced constant thermal tensile stress by $1000^{\circ}C$. RTA showed very small bonding strength due to premating failure during annealing. FLA showed enough bonding strength at $500^{\circ}C$, however large thermal tensile stress were induced. We confirmed that premated wafer pairs should have appropriate compressive interfacial stress to compensate the thermal tensile stress during a given annealing process.

Study on the Physical and Thermal Properties of Rice Kernels - Thermal Properties - (벼의 물리적(物理的) 및 열적(熱的) 특성(特性)에 관(関)한 연구(硏究) -열적(熱的) 특성(特性)에 관(関)하여-)

  • Koh, Hak Kyun;Noh, Sang Ha;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.89-96
    • /
    • 1984
  • This study was intended to search the thermal properties of rice which are necessary in preventing qualitative and quantitative losses in the drying and milling processes. First, the coefficient of cubical thermal expansion of brown rice was measured, which is required for analyzing the internal stress of rice, and then theoretical thermal and moisture stresses were calculated. The results are summarized as follows: 1. The coefficient of cubical thermal expansion of brown rice was about $2.81{\times}10^{-4}/^{\circ}C$ in the temperature range of $10^{\circ}C-60^{\circ}C$. 2. When the shape of brown rice was assumed to be a sphere or a cylinder, maximum thermal stress due to temperature change of $20^{\circ}C-60^{\circ}C$ was in the range of $25-100kg/cm^2$. And maximum moisture stress was in the range of $450-650kg/cm^2$ when the drying temperature was $35^{\circ}C$, initial and final moisture contents of brown rice were 20% and 14% (w.b.), and the moisture diffusion coefficient was assumed to be $6.79{\times}10^{-4}cm^2/hr$. 3. Consequently, it was concluded that crack formation in a rice kernel is mainly caused by moisture stress.

  • PDF

Thermal and Mechanical Evaluation of Environmental Barrier Coatings for SiCf-SiC Composites (SiCf-SiC 복합재료의 내환경 코팅 및 열, 기계적 내구성 평가)

  • Chae, Yeon-Hwa;Moon, Heung Soo;Kim, Seyoung;Woo, Sang Kuk;Park, Ji-Yeon;Lee, Kee Sung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.84-93
    • /
    • 2017
  • This study investigates thermal and mechanical characterization of environmental barrier coating on the $SiC_f-SiC$ composites. The spherical environmental barrier coating (EBC) powders are prepared using a spray drying process for flowing easily during coating process. The powders consisting of mullite and 12 wt% of Ytterbium silicate are air plasma sprayed on the Si bondcoat on the LSI SiC fiber reinforced SiC composite substrate for protecting the composites from oxidation and water vapor reaction. We vary the process parameter of spray distance during air plasma spray of powders, 100, 120 and 140 mm. After that, we performed the thermal durability tests by thermal annealing test at $1100^{\circ}C$ for 100hr and thermal shock test from $1200^{\circ}C$ for 3000 cycles. As a result, the interface delamination of EBC never occur during thermal durability tests while stable cracks are prominent on the coating layer. The crack density and crack length depend on the spray distance during coating. The post indentation test indicates thermal tests influence on the indentation load-displacement mechanical behavior.

Numerical Analysis of Fiber Reinforced Concrete Base Subjected to Environmental Loads (섬유보강 콘크리트 기층의 환경하중에 대한 거동 수치 해석)

  • Cho, Young-Kyo;Kim, Seong-Min;Park, Jong-Sub;Park, Young-Hwan
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.239-249
    • /
    • 2011
  • The behavior of the fiber reinforced concrete (FRC) base under environmental loads was analyzed numerically as a fundamental study to develop a high structural and functional performance composite pavement system in which the base was formed using FRC and the asphalt or cement concrete surface was placed on it. A two-dimensional finite element model of the FRC base was developed and the sensitivity study was performed with the variables including slab thickness of base, thermal expansion coefficient, elastic modulus, and tensile and compressive strengths. The crack spacing and crack width were selected as representatives of the base behavior. The effects of the selected variables on the crack spacing and crack width were analyzed and the sensitive variables were determined. The results of this study could be useful to determine the optimal material properties of the FRC base for combining well with the surface materials.

Leak-Before-Break (LBB) Assessment Method Considering Crack Nonlinearity Using Effective Elastic Modulus and Material Nonlinearity (유효탄성계수를 이용한 균열 비선형 및 재료 비선형을 고려한 파단전누설(LBB) 평가 방법)

  • Kim, Maan-Won;Kim, Sung-Hwan;Lee, Eui-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.651-659
    • /
    • 2011
  • With the increase in the thermal power output of recently developed nuclear power plants, the applied forces and moments are increased in some piping systems, so that the leak-before-break (LBB) application criteria would not be satisfied in those pipes. In this paper, we present a method for obtaining the additive LBB margin in the pipes by considering the nonlinearity of the crack and material properties. Finite element analysis and the moment-rotation equation of beam theory were used to calculate the nonlinearity of the crack and material properties. Moreover crack stability analysis was performed using the method proposed in this study. The LBB margin was increased effectively through consideration of the nonlinearity of the crack and material properties in the pipe.