• 제목/요약/키워드: Thermal coefficient of resistance

검색결과 308건 처리시간 0.025초

Micro-Channel형 열교환기에 부착된 핀의 열접촉저항이 열전달 특성에 미치는 영향 (Effect of Thermal Contact Resistence on the Heat Transfer Characteristics of Air Flow around the Finned Micro-Channel Tube for MF Evaporator)

  • 박용석;성홍석;성동민;서정세
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.121-126
    • /
    • 2021
  • In this study, the effect of thermal contact resistance between pin-channel tubes on the heat transfer characteristics was analytically examined around the channel tubes with the pins attached to two consecutive arranged channel pipes. The numerical results showed that the heat transfer coefficient decreased geometrically as the thermal contact resistance increased, and the corresponding temperature change on the contact surface increased as the thermal contact resistance increased. The thinner the pin, the more pronounced the geometric drop in the heat transfer coefficient. It was confirmed that the higher the height of the pin, the higher was the heat transfer coefficient, however, the greater the size of the thermal contact resistance, the smaller was the heat transfer coefficient. It was found that the temperature change in the inner wall of the channel tube did not significantly affect the heat transfer characteristics owing to the thermal contact resistance. Furthermore, the velocity of air at the entrance of the channel tube was proportional to the heat transfer coefficient due to a decrease in the convective heat resistance corresponding to an increase in the flow rate.

2자유도 진동계의 운동정보 전달에 관한 연구;경계면열저항 (A Study on the Transfer of the Oscillator's Motion Information with 2 Degrees of Freedom;Thermal Boundary Resistance)

  • 최순호;최현규;김창복;김경근;윤석훈;오철
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1102-1107
    • /
    • 2005
  • The analysis of the thermal boundary resistance is very important in the both cases of microscale and macroscale systems because it plays a role of thermal barrier against a heat flow. Especially, since fairly large heat energy is generated in microscale or nanoscale systems with electronic chips, the thermal boundary resistance is a key factor to guarantee the performance of those devices. In this study, the transfer of the oscillator's motion information with 2 degrees of freedom is investigated for clarifying the mechanism of a thermal boundary resistance. We found that the transfer of the oscillator's motion information is defined as a cross-correlation coefficient and the magnitude of it determines the temperature jump over a solid interface. That is, the temperature jump over an interface increases as the magnitude of a cross-correlation coefficient decreases and vice versa.

  • PDF

중공 유리 마이크로스피어 혼입 시멘트 복합체의 내열충격성 향상에 대한 실험적 연구 (Experimental Study on Improving Thermal Shock Resistance of Cement Composite Incorporating Hollow Glass Microspheres)

  • 최요민;신현규
    • 한국분말재료학회지
    • /
    • 제29권6호
    • /
    • pp.505-510
    • /
    • 2022
  • The thermal shock resistance of cement composites with hollow glass microspheres (HGM) is investigated. Cement composites containing various concentrations of HGM are prepared and their properties studied. The density, thermal conductivity, and coefficient of thermal expansion of the composites decrease with increasing HGM concentration. A thermal shock test is performed by cycling between -60 and 50℃. After the thermal shock test, the compressive strength of the cement composite without HGM decreases by 28.4%, whereas the compressive strength of the cement composite with 30 wt% HGM decreases by 5.7%. This confirms that the thermal shock resistance of cement is improved by the incorporation of HGM. This effect is attributed to the reduction of the thermal conductivity and coefficient of thermal expansion of the cement composite because of the incorporation of HGM, thereby reducing the occurrence of defects due to external temperature changes.

전기저항식 변형률 게이지를 이용한 콘크리트의 열팽창계수 측정법 (Coefficient of Thermal Expansion Measurement of Concrete using Electrical Resistance Strain Gauge)

  • 남정희;안덕순;김연복
    • 한국도로학회논문집
    • /
    • 제15권6호
    • /
    • pp.25-32
    • /
    • 2013
  • PURPOSES : The purpose of this study is to provide the method of how to measure the coefficient of thermal expansion of concrete using temperature compensation principle of electrical resistance strain gauge. METHODS : The gauge factor compensation method and thermal output(temperature-induced apparent strain) correction method of self-temperature compensation gauge were investigated. From the literature review, coefficient of thermal expansion measurement method based on the thermal output differential comparison between reference material(invar) and unknown material(concrete) was suggested. RESULTS : Thermal output is caused by two reasons; first the electrical resistivity of the grid conductor is changed by temperature variation and the second contribution is due to the differential thermal expansion between gauge and the test material. Invar was selected as a reference material and it's coefficient of thermal expansion was measured as $2.12{\times}10^{-6}m/m/^{\circ}C$. by KS M ISO 11359-2. The reliability of the suggested measurement method was evaluated by the thermal output measurement of invar and mild steel. Finally coefficient of thermal expansion of concrete material for pavement was successfully measured as $15.45{\times}10^{-6}m/m/^{\circ}C$. CONCLUSIONS : The coefficient of thermal expansion measurement method using thermal output differential between invar and unknown concrete material was evaluated by theoretical and experimental aspects. Based on the test results, the proposed method is considered to be reasonable to apply for coefficient of thermal expansion measurement.

높은 열저항 계수를 가지는 비냉각형 적외선 열영상 이미지 센서용 MDTF(Metal-dielectric Thin Film)에 관한 연구 (A Study on the MDTF for Uncooled Infrared Ray Thermal Image Sensors with High Thermal Coefficient of Resistance)

  • 정은식;정세진;강이구;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제25권5호
    • /
    • pp.366-371
    • /
    • 2012
  • In this paper, fabricated by MEMS uncooled micro-bolometer detector for the study in the infrared sensitivity enhancement. Absorption layer SiOx-Metal series MDTF (metal-dielectric thin film) by high absorption rate and has a high thermal coefficient of resistance, low noise characteristics were implemented. Then MDTF were made in a vacuum deposition method. And MDTF for the analysis of the physical properties of silicon wafers were fabricated, TCR (temperature coefficient of resistance) value was made in order to measure the glass wafer and FT-IR (Fourier Transform Infrared spectroscopy) values were made in order to measure the germanium window. The analyzed results of MDTF -3 [%/K] has more characteristics of the TCR. And 8~12 um wavelength region close to 70% in the absorption characteristic.

가스터빈의 열차폐용 탑코팅 설계기술 (Top Coating Design Technique for Thermal Barrier of Gas Turbine)

  • 구재민;이시영;석창성
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.802-808
    • /
    • 2013
  • Thermal barrier coating (TBC) is used to protect substrates and extend the operating life of gas turbines in power plant and aeronautical applications. The major causes of failure of such coatings is spallation, which results from thermal stress due to a thermal expansion coefficient mismatch between the top coating and the bond coating layers. In this paper, the effects of the material properties and the thickness of the top coating layer on thermal stresses were evaluated using the finite element method and the equation for the thermal expansion coefficient mismatch stress. In addition, we investigated a design technique for the top coating whereby thermal resistance is exploited.

주형/주물 접촉면에서의 접촉열저항을 고려한 상변화문제에 관한 연구 (Numerical Analysis for Stefan Problem in Mold-Casting with Air-Gap Resistance)

  • 여문수;손병진;이관수
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.348-355
    • /
    • 1992
  • Casting structures and properties are determined by the solidification speed in the metal mold. The heat transfer characteristics of the interface between the mold and the casting is one of the major factors that control the solidification speed. According to Sully's research, the thermal resistance exists due to the air-gap formation at the mold-casting interface during the freezing process and the interface heat transfer coefficient is used to describe the degree of it. In this study, one-dimensional Stefan problem with air-gap resistance in the cylindrical geometry is considered and heat transfer characteristics is numerically examined. The temperature distribution and solidification speed are obtained by using the modified variable time step method. And the effects of the major parameters such as mold geometry, thermal conductivity, heat transfer coefficient and initial temperature of casting on the thermal characteristics are investigated.

Thermal Shock Resistance and Thermal Expansion Behavior of $Al_2TiO_5$ Ceramics

  • Kim, Ik-Jin
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 2000년도 Proceedings of 2000 International Nano Crystals/Ceramics Forum and International Symposium on Intermaterials
    • /
    • pp.179-193
    • /
    • 2000
  • Aluminium titanate (Al₂TiO5) with an excellent thermal shock resistant and a low the expansion coefficient was obtained by solid solution with MgO, SiO₂, and ZrO₂ in the Al₂TiO5 lattice or in the grain boundary solution through electrofusion in an arc furnace. However, these materials have low mechanical strength due to the presence of microcracks developed by a large difference in thermal expansion coefficients along crystallographic axes. Pure Al₂TiO5 tends to decompose into α-Al₂O₃ and TiO₂-rutile in the temperature range of 750-1300℃ that rendered it apparently useless for industrial applications. Several thermal shock tests were performed: Long therm thermal annealing test at 1100℃ for 100h; and water quenching from 950 to room temperature (RT). Cyclic thermal expansion coefficients up to 1500℃ before and after decomposition tests was also measured using a dilatometer, changes in the microstructure, thermal expansion coefficients, Young's modulus and strengths were determined. The role of microcracks in relation to thermal shock resistance and thermal expansion coefficient is discussed.

  • PDF

대용량 이차전지 관리 시스템용 전력형 션트저항의 열기전력 안정화 (Stabilization of Thermo Electromotive Force of Power Type Shunt Resistor for Mass Storage Secondary Battery Management System)

  • 김은민;이선우
    • 한국전기전자재료학회논문지
    • /
    • 제30권6호
    • /
    • pp.376-380
    • /
    • 2017
  • In this paper, we prepared a metal alloy resistor with stable thermal electro motive force (thermal EMF) as well as a low temperature coefficient of resistance (TCR) by adjusting the manganese proportion from 3 to 12 wt% in the Cu-Mn-Ni alloy. Composition of the fabricated metal alloy was investigated using energy dispersive X-ray (EDX) analysis. The TCR of each sample was measured as 44.56, 40.54, 35.60, and 31.56 ppm for Cu-3Mn-2Ni, Cu-5Mn-2Ni, Cu-10Mn-2Ni, and Cu-12Mn-2Ni, respectively. All the resistor samples were available for the F grade (${\pm}1%$ of the allowable error of resistance) high-precision resistor. All the samples satisfied the baseline of high thermal EMF (under 3 mV at $60^{\circ}C$); however, Cu-3Mn-2Ni and Cu-5Mn-2Ni satisfied the baseline of low thermal EMF (under 0.3 mV at $25^{\circ}C$). We were thus able to design and fabricate the metal alloy resistor of Cu-3Mn-2Ni and Cu-5Mn-2Ni to have low TCR and stable thermal EMF at the same time.