• Title/Summary/Keyword: Thermal boundary resistance

Search Result 75, Processing Time 0.021 seconds

Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate

  • Behdinan, Kamran;Moradi-Dastjerdi, Rasool
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.593-603
    • /
    • 2022
  • The critical buckling temperature rise of a newly proposed piezoelectrically active sandwich plate (ASP) has been investigated in this work. This structure includes a porous polymeric layer integrated between two piezoelectric nanocomposite layers. The piezoelectric material is made of a passive polymeric material that is activated by lead-free nanowires (NWs) of zinc oxide (ZnO) embedded inside the matrix. In both nanocomposite layers and porous core, functional graded (FG) patterns have been considered for the distributions of ZnO NWs and voids, respectively. By adopting a higher-order theory of plates, the governing equations of thermal buckling are obtained. This set of equations is then treated using an extended mesh-free solution. The effects of plate dimensions, porosity states, and the nanowire parameters have been investigated on the critical buckling temperature rises of the proposed lightweight ASPs with different boundary conditions. The results disclose that the use of porosities in the core and/or mixing ZnO NWs in the face sheets substantially arise the critical buckling temperatures of the newly proposed active sandwich plates.

On the snap-buckling phenomenon in nanocomposite curved tubes

  • Dan Chen;Jun Shao;Zhengrong Xu;Hadi Babaei
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.13-22
    • /
    • 2024
  • The nonlinear snap-through buckling of functionally graded (FG) carbon nanotube reinforced composite (CNTRC) curved tubes is analytically investigated in this research. It is assumed that the FG-CNTRC curved tube is supported on a three-parameter nonlinear elastic foundation and is subjected to the uniformly distributed pressure and thermal loads. Properties of the curved nanocomposite tube are distributed across the radius of the pipe and are given by means of a refined rule of mixtures approach. It is also assumed that all thermomechanical properties of the nanocomposite tube are temperature-dependent. The governing equations of the curved tube are obtained using a higher-order shear deformation theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the tube. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large deflection in the curved tube. Equations of motion are solved using the two-step perturbation technique for nanocomposite curved tubes which are simply-supported and clamped. Closed-form expressions are provided to estimate the snap-buckling resistance of FG-CNTRC curved pipes rested on nonlinear elastic foundation in thermal environment. Numerical results are given to explore the effects of the distribution pattern and volume fraction of CNTs, thermal field, foundation stiffnesses, and geometrical parameters on the instability of the curved nanocomposite tube.

An Experimental Study of Improving Fire Performance with Steel-fibers for Internally Anchored Square Composite Columns (내화성능 개선을 위한 강섬유 보강 내부 앵커형 각형강관 합성기둥의 실험연구)

  • Kim, Sun Hee;Yom, Kong Soo;Kim, Yong Hwan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.499-509
    • /
    • 2014
  • This study focuses on mixing steel fiber in the concrete to improve the ductility and toughness of the columns. The purpose of the study is to evaluate the load capacity and deformation capacity associated with the amount of steel fiber and loading condition and to analyze the interplay between the steel fiber reinforced concrete and the welding built-up square tube in terms of structure and fire resistance performance. Reinforcement of concrete with steel fiber(Vf=0.375%), when cross-section shape and boundary condition (load ratio) remained unchanged, improved fire resistance performance by 1.1~1.3 times. It is deemed that the area resisting thermal load increased and fire resistance performance was improved since the concrete reinforced with steel fiber restrained cracking. In addition, the fact that the cross-sections of the concrete were barely damaged indicates that load share capacity was greatly improved.

Analytical Study of the Fire Resistance for Beams Consisting of Fire Resistant Steels with a Both Fixed Boundary Conditions (양단 고정단인 건축용 내화강재 적용 보부재의 해석적 내화성능 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.82-86
    • /
    • 2016
  • The fire resistance of a statistically indeterminate beam made of fire resistant steel was analyzed using the mechanical and thermal databases and compared with that of an indeterminate beam constructed of ordinary structural steel to not only determine the fire resistance performance of a statistically indeterminate beam itself, but also to determine if it is stable to test the fire resistance performance with a determinate beam built with ordinary structural steel instead of an indeterminate beam made from fire resistant steels. The results showed that the fire resistance of an indeterminate beam consisting of fire resistant steels is better than that of a determinate beam made of SS 400 and if the length of the beam built with FR 490 is longer, the displacement of the beam is higher. In addition, the fire test with a determinate beam made of SS 400 is was more conservative than that of an indeterminate beam made of FR 490 in the range of the same length. Therefore, another measure should be considered if beams built with FR 490 are longer than thos of SS 400.

Characterization of Subsurface Damage in Si3N4 Ceramics with Static and Dynamic Indentation

  • Kim, Jong-Ho;Kim, Young-Gu;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.537-541
    • /
    • 2005
  • Silicon nitride is one of the most successful engineering ceramics, owing to a favorable combination of properties, including high strength, high hardness, low thermal expansion coefficient, and high fracture toughness. However, the impact damage behavior of $Si_3N_4$ ceramics has not been widely characterized. In this study, sphere and explosive indentations were used to characterize the static and dynamic damage behavior of $Si_3N_4$ ceramics with different microstructures. Three grades of $Si_3N_4$ with different grain size and shape, fine-equiaxed, medium, and coarse-elongated, were prepared. In order to observe the subsurface damaged zone, a bonded-interface technique was adopted. Subsurface damage evolution of the specimens was then characterized extensively using optical and electron microscopy. It was found that the damage response depends strongly on the microstructure of the ceramics, particularly on the glassy grain boundary phase. In the case of static indentation, examination of subsurface damage revealed competition between brittle and ductile damage modes. In contrast to static indentation results, dynamic indentation induces a massive subsurface yield zone that contains severe micro-failures. In this study, it is suggested that the weak glassy grain boundary phase plays an important role in the resistance to dynamic fracture.

Thermal Stability Enhancement of Nickel Monosilicides by Addition of Pt and Ir (Pt와 Ir 첨가에 의한 니켈모노실리사이드의 고온 안정화)

  • Yoon, Ki-Jeong;Song, Oh-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.27-36
    • /
    • 2006
  • We fabricated thermally evaporated 10 nm-Ni/(poly)Si, 10 nm-Ni/l nm-Ir/(poly)Si and 10 nm-Ni/l nm-Pt/(poly)Si films to investigate the thermal stability of nickel monosilicides at the elevated temperatures by rapid annealing them at the temperatures of $300{\sim}1200^{\circ}C$ for 40 seconds. Silicides of 50 nm-thick were formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to examine sheet resistance. A scanning electron microscope and field ion beam were employed for thickness and microstructure evolution characterization. An X-ray diffractometer and an Auger depth profiler were used for phase and composition analysis, respectively. Nickel silicides with platinum have no effect on widening the NiSi stabilization temperature region. Nickel silicides with iridium farmed on single crystal silicon showed a low resistance up to $1200^{\circ}C$ while the ones formed on polycrystalline silicon substrate showed low resistance up to $850^{\circ}C$. The grain boundary diffusion and agglomeration of silicides lowered the NiSi stable temperature with polycrystalline silicon substrates. Our result implies that our newly proposed Ir added NiSi process may widen the thermal process window for nano CMOS process.

  • PDF

Microstructural Effects on Hydrogen Delayed Fracture of 600MPa and 800MPa grade Deposited Weld Metal (600MPa급과 800MPa급 전용착금속의 미세조직에 따른 수소지연파괴 거동)

  • Kang, Hee Jae;Lee, Tae Woo;Yoon, Byung Hyun;Park, Seo Jeong;Chang, Woong Seong;Cho, Kyung Mox;Kang, Namhyun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.52-58
    • /
    • 2012
  • Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to-failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

Room temperature operating nitrogen dioxide sensor based tellurium thin films (Te를 이용한 상온 동작형 NO2 센서 제작 및 감응 특성)

  • Shin, Han-Jae;Song, Kap-Duk;Joo, Byung-Su;Sohn, Myoung-Ho;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.91-96
    • /
    • 2007
  • The characteristic of tellurium thin films was studied for detecting nitrogen dioxide gas at room temperature. The film was deposited on $Al_{2}O_{3}$ substrate by using thermal evaporator. The subsequent process was heat treatment by several conditions. (temperature, flowed gases) Surface and grain boundary was investigated using SEM. The results showed that resistance of the tellurium film decreases reversibly in the presence of nitrogen dioxide. The sensitivity of this device depends on the gas concentration and detect lower concentrations less than 10 ppm.

A Study on the Thermal Stability in Multi-Aluminum Thin Films during Isothermal Annealing (등온 열처리시 알루미늄 다층 박막의 열적 안정성에 관한 연구)

  • 전진호;박정일;박광자;김홍대;김진영
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.4
    • /
    • pp.196-205
    • /
    • 1991
  • Multi-level thin films are very important in ULSI applications because of their high electromigration resistance. This study presents the effects of titanium, titanium nitride and titanium tungsten underlayers of the stability of multi-aluminum thin films during isothermal annealing. High purity Al(99.999%) films have been electron-beam evaporated on Ti, TiN, TiW films formed on SiO2/Si (P-type(100))-wafer substrates by RF-sputtering in Ar gas ambient. The hillock growth was increased with annealing temperatures. Growth of hillocks was observed during isothermal annealing of the thin films by scanning electron microscopy. The hillock growth was believed to appear due to the recrystallization process driven by stress relaxation during isothermal annealing. Thermomigration damage was also presented in thin films by grain boundary grooving processes. It is shown that underlayers of Al/TiN/SiO2, Al/TiW/SiO2 thin films are preferrable to Al/SiO2 thin film metallization.

  • PDF

The Application of Metallic Thin Film for Tep Electrode of Poly-Si Solar Cell (다결정 실리콘 태양전지의 상부 전극용 금속 박막 적용)

  • 김상수;임동건;심경석;이준신;김흥우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.202-205
    • /
    • 1997
  • We investigated grain boundary effect for terrestrial applications of solar cell\ulcorner with low cost, large area, and high efficiency. Grain boundaries are known as potential barriers and recombination centers for the photo-generated charge carriers, which make it difficult to achieve a high efficiency cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatments, various grid patterns, selective wet etchings for grain boundaries, buried contact metallizations along grain boundaries, and use of metallic thin films. From the various grid patterns we learned that the series resistance of solar cell reduced open circuit voltage and consequently decreased the cell efficiency. This paper describes the effect of various grid patterns and the employment of metallic thin films for a top electrode.

  • PDF