• 제목/요약/키워드: Thermal boundary condition

검색결과 265건 처리시간 0.026초

비전도성 충진액을 포함하는 전동워터펌프 열 해석 모델 (Thermal analysis model for electric water pumps with non-conductive cooling liquid)

  • 정성택;윤선진;하석재
    • Design & Manufacturing
    • /
    • 제16권2호
    • /
    • pp.46-52
    • /
    • 2022
  • As the consumer market in the eco-friendly vehicle industry grows, the demand for water pump in a electric car parts market. This study intend to propose a mathematical model that can verify the effect of improving thermal properties when a non-conductive cooling filler liquid is introduced into an electric vehicle water pump. Also, the pros and cons of the immersion cooling method and future development way were suggested by analyzing the cooling characteristics using on the derived analysis solution. Thermal characteristics analysis of electric water pump applied with non-conductive filler liquid was carried out, and the diffusion boundary condition in the motor body and the boundary condition the inside pump were expressed as a geometric model. As a result of analyzing the temperature change for the heat source of the natural convection method and the heat conduction method, the natural convection method has difficulty in dissipating heat because no decrease in temperature due to heat release was found even after 300 sec. Also, it can be seen that the heat dissipation effect was obtained even though the non-conductive filling liquid was applied at the 120 sec and 180 sec in the heat conduction method. It has proposed to minimize thermal embrittlement and lower motor torque by injecting a non-conductive filler liquid into the motor body and designing a partition wall thickness of 2.5 mm or less.

QUADRATURE METHOD FOR EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS ARISING IN A THERMAL EXPLOSION THEORY

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • 제39권3호
    • /
    • pp.271-278
    • /
    • 2023
  • We consider a 1-dimensional reaction diffusion equation with the following boundary conditions arising in a theory of the thermal explosion {-u"(t) = λf(u(t)), t ∈ (0, l), -u'(0) + C(0)u(0) = 0, u'(l) + C(l)u(l) = 0, where C : [0, ∞) → (0, ∞) is a continuous and nondecreasing function, λ > 0 is a parameter and f : [0, ∞) → (0, ∞) is a continuous function. We establish the extension of Quadrature method introduced in [8]. Using this extension, we provide numerical results for models with a typical function of f and C in a thermal explosion theory, which verify the existence, uniqueness and multiplicity results proved in [6].

Buckling analysis of bidirectional FG porous beams in thermal environment under general boundary condition

  • Abdeljalil Meksi;Mohamed Sekkal;Rabbab Bachir Bouiadjra;Samir Benyoucef;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • 제33권3호
    • /
    • pp.275-284
    • /
    • 2024
  • This work presents a comprehensive investigation of buckling behavior of bidirectional functionally graded imperfect beams exposed to several thermal loading with general boundary conditions. The nonlinear governing equations are derived based on 2D shear deformation theory together with Von Karman strain-displacement relation. The beams are composed of two different materials. Its properties are porosity-dependent and are continuously distributed over the length and thickness of the beams following a defined law. The resulting equations are solved analytically in order to determine the thermal buckling characteristics of BDFG porous beams. The precision of the current solution and its accuracy have been proven by comparison with works previously published. Numerical examples are presented to explore the effects of the thermal loading, the elastic foundation parameters, the porosity distribution, the grading indexes and others factors on the nonlinear thermal buckling of bidirectional FG beam rested on elastic foundation.

Boundary condition coupling methods and its application to BOP-integrated transient simulation of SMART

  • Jongin Yang;Hong Hyun Son;Yong Jae Lee;Doyoung Shin;Taejin Kim;Seong Soo Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.1974-1987
    • /
    • 2023
  • The load-following operation of small modular reactors (SMRs) requires accurate prediction of transient behaviors that can occur in the balance of plants (BOP) and the nuclear steam supply system (NSSS). However, 1-D thermal-hydraulics analysis codes developed for safety and performance analysis have conventionally excluded the BOP from the simulation by assuming ideal boundary conditions for the main steam and feed water (MS/FW) systems, i.e., an open loop. In this study, we introduced a lumped model of BOP fluid system and coupled it with NSSS without any ideal boundary conditions, i.e., in a closed loop. Various methods for coupling boundary conditions at MS/FW were tested to validate their combination in terms of minimizing numerical instability, which mainly arises from the coupled boundaries. The method exhibiting the best performance was selected and applied to a transient simulation of an integrated NSSS and BOP system of a SMART. For a transient event with core power change of 100-20-100%, the simulation exhibited numerical stability throughout the system without any significant perturbation of thermal-hydraulic parameters. Thus, the introduced boundary-condition coupling method and BOP fluid system model can expectedly be employed for the transient simulation and performance analysis of SMRs requiring daily load-following operations.

An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries

  • Kim, Jungwoo;Park, Haecheon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.1026-1035
    • /
    • 2004
  • An immersed boundary method for solving the Navier-Stokes and thermal energy equations is developed to compute the heat transfer over or inside the complex geometries in the Cartesian or cylindrical coordinates by introducing the momentum forcing, mass source/sink, and heat source/sink. The present method is based on the finite volume approach on a staggered mesh together with a fractional step method. The method of applying the momentum forcing and mass source/sink to satisfy the no-slip condition on the body surface is explained in detail in Kim, Kim and Choi (2001, Journal of Computational Physics). In this paper, the heat source/sink is introduced on the body surface or inside the body to satisfy the iso-thermal or iso-heat-flux condition on the immersed boundary. The present method is applied to three different problems : forced convection around a circular cylinder, mixed convection around a pair of circular cylinders, and forced convection around a main cylinder with a secondary small cylinder. The results show good agreements with those obtained by previous experiments and numerical simulations, verifying the accuracy of the present method.

316 스테인리스강의 입계부식에 미치는 열사이클과 응력의 영향 (Effect of Thermal Cycle and Stress on the Intergranular Corrosion in 316 Stainless Steel)

  • 정병호;김무길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.709-715
    • /
    • 2006
  • The effects of thermal cycle condition and applied stress on the intergranular corrosion in austenitic 316 type stainless steels were investigated. Specimens were solution-treated at 1100$^{\circ}C$ for one hour and then sensitized in the temperature range of $500{\sim}800^{\circ}C$ by holding $2{\sim}300s$ with a various applied stresses of $0{\sim}8kg/mm^2$. Degree of sensitization. DOS %, was measured through polarization curve by electrochemical DL-EPR test. Microstructural observations were also conducted DOS % increased with an increase of sensitization temperature and/or holding time. Increase of applied stress resulted in increase of DOS % and more corroded surface because of acceleration of intergranular corrosion and fine grain size due to the stress. Cr depleted zone near grain boundary was observed. The amount of depletion was profounded with an increase of sensitization temperature, holding time and applied stress. $M_{23}C_6$ carbides were precipitated discontinuously at grain boundary. However, its amount was relatively small in the thermal cycle condition of 800$^{\circ}C$, 300sec and 4kg/mm$^2$.

Numerical study of desalination by Sweeping Gas Membrane Distillation

  • Loussif, Nizar;Orfi, Jamel
    • Membrane and Water Treatment
    • /
    • 제11권5호
    • /
    • pp.353-361
    • /
    • 2020
  • The present study deals with a numerical investigation of heat and mass transfer in a Sweeping Gas Membrane Distillation (SGMD) used for desalination. The governing equations expressing the conservation of mass, momentum, energy and species with coupled boundary conditions were solved numerically. The slip boundary condition applied on the feed saline solution-hydrophobic membrane interface is taken into consideration showing its effects on profiles and process parameters.The numerical model was validated with available experimental data and was found to be in good agreement particularly when the slip condition is considered. The results of the simulations highlighted the effect of slip boundary condition on the velocity and temperature distributions as well as the process effectiveness. They showed in particular that as the slip length increases, the permeate flux of fresh water and process thermal efficiency rise.

Experimental Investigations for Thermal Mutual Evaluation in Multi-Chip Modules

  • Ayadi, Moez;Bouguezzi, Sihem;Ghariani, Moez;Neji, Rafik
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1345-1356
    • /
    • 2014
  • The thermal behavior of power modules is an important criterion for the design of cooling systems and optimum thermal structure of these modules. An important consideration for high power and high frequency design is the spacing between semiconductor devices, substrate structure and influence of the boundary condition in the case. This study focuses on the thermal behavior of hybrid power modules to establish a simplified method that allows temperature estimation in different module components without decapsulation. This study resulted in a correction of the junction temperature values estimated from the transient thermal impedance of each component operating alone. The corrections depend on mutual thermal coupling between different chips of the hybrid structure. A new experimental technique for thermal mutual evaluation is presented. Notably, the classic analysis of thermal phenomena in these structures, which was independent of dissipated power magnitude and boundary conditions in the case, is incorrect.

단일(單一) 긴 수직평판(垂直平板)핀을 가진 수평전도관(水平傳導管)으로 부터의 자연대류(自然對流) (Conjugate Heat Transfer by Natural Convection from a Horizontal Heat Exchanger Tube with a Long Vertical Longitudinal Plate Fin)

  • 배대석;권순석
    • 설비공학논문집
    • /
    • 제1권1호
    • /
    • pp.64-72
    • /
    • 1989
  • Laminar natural convection heat transfer from a horizontal heat exchanger tube with one infinitely long vertical plate fin has been studied by a finite-difference numerical procedure. In predicting convective heat transfer from a circular tube, the thermal boundary condition at solid fluid interface is usually assumed to be isothermal. However, in reality, the thermal boundary condition is not isothermal, and the tube has the thickness and the conductivity. So the temperature at the interface is not known a priori to the calculation. This problem has the conjugate phenomena which occur between the tube conduction and external natural convection, and between the fin conduction and external natural convection. Numerical results are obtained to determine the effects of the conductivity of solid wall and the thickness of tube wall on heat transfer. It is found that the conduction causes significant influence on the natural convection heat transfer at low K and high ${\delta}$.

  • PDF

SWNT 투명박막히터의 열성능 평가를 위한 자유대류 열전달 해석 (A COMPUTATIONAL STUDY ON FREE CONVECTION FOR THERMAL PERFORMANCE EVALUATION OF A SWNT THIN-FILM HEATER)

  • 곽호상;이성은;박경석;김경진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.315-320
    • /
    • 2009
  • A computational investigation is conducted on free convection from a thin plate having a surface heat source. The thermal configuration simulates the recently-proposed transparent film heater made of a single-walled carbon nanotube film on a glass substrate. The Navier-Stokes computations are carried out to study laminar free convection from the heater. Parallel numerical experiments are performed by using a simplified design analysis model which solve the conduction equation with the boundary conditions utilizing several existing correlations for convective heat transfer coefficient. Comparison leads to the most suitable boundary condition for the thermal model to evaluate the performance evaluation of a transparent thin-film heater.

  • PDF