Browse > Article
http://dx.doi.org/10.6113/JPE.2014.14.6.1345

Experimental Investigations for Thermal Mutual Evaluation in Multi-Chip Modules  

Ayadi, Moez (Dept. of Electrical Engineering, National School of Electronic and Communication, University of Sfax)
Bouguezzi, Sihem (Dept. of Electrical Engineering, National School of Engineers of Sfax)
Ghariani, Moez (Dept. of Electrical Engineering, National School of Electronic and Communication, University of Sfax)
Neji, Rafik (Dept. of Electrical Engineering, National School of Engineers of Sfax)
Publication Information
Journal of Power Electronics / v.14, no.6, 2014 , pp. 1345-1356 More about this Journal
Abstract
The thermal behavior of power modules is an important criterion for the design of cooling systems and optimum thermal structure of these modules. An important consideration for high power and high frequency design is the spacing between semiconductor devices, substrate structure and influence of the boundary condition in the case. This study focuses on the thermal behavior of hybrid power modules to establish a simplified method that allows temperature estimation in different module components without decapsulation. This study resulted in a correction of the junction temperature values estimated from the transient thermal impedance of each component operating alone. The corrections depend on mutual thermal coupling between different chips of the hybrid structure. A new experimental technique for thermal mutual evaluation is presented. Notably, the classic analysis of thermal phenomena in these structures, which was independent of dissipated power magnitude and boundary conditions in the case, is incorrect.
Keywords
3D numerical simulation; Hybrid power module; Superposition method; Thermal influence measurement; Transient thermal impedance measurement;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Y. A. Shammas, M. P. Rodriguez, and F. Masana, "A simple method for evaluating the transient thermal response of semiconductor devices," Microelectronics Reliability, Vol. 42, No. 1, pp. 109-117, Jan. 2002.   DOI
2 A. Hamidi, G. Coquery , R. Lallemand, P. Vales, and J. M. Dorkel, "Temperature measurements and thermal modeling of high power IGBT multichip modules for reliability investigations in traction applications," Microelectronics Reliability, Vol. 38, No. 6-8, pp. 1353-1359, Jun.-Aug. 1998.   DOI   ScienceOn
3 Z. Khatir and S. Lefebvre, "Boundary element analysis of thermal fatigue effect son high power IGBT modules," Microelectronics Reliability, Vol. 44, No. 6, pp. 929-938, Jun. 2004.   DOI
4 S. Carubelli and Z. Khatir, "Experimental validation of a thermal modelling method dedicated to multichip power modules in operating conditions," Microelectronics Journal, Vol. 34, No. 12, pp. 1143-1151, Dec. 2003.   DOI   ScienceOn
5 T. Stockmeier and W. Tursky, Present and Future of Power Electronics Modules, Semikron Elektronik GmbH, Sigmundstr, pp. 3-9, 2000.
6 COSMOS/M, GeoStar 2.5 Copyright (C). Structural Research and Analysis corporation los-Angeles, California, USA, 1999.
7 T. Stockmeier, Power Semiconductor Packaging - A Problem or a Resource? From the State of the Art to Future Trends, Semikron Elektronik GmbH, Sigmundstr, 2000.
8 U. Hecht and U. Scheuermann, Static and Transient Thermal Resistance of Advanced Power Modules, Semikron Elektronik GmbH, Sigmundstr, 2000.
9 J.-M. Dorkel, P. Tounsi, and P. Leturcq, "Three-dimensional thermal modeling based on the two-port network theory for hybrid or monolithic integrated power circuits," IEEE Trans. Electron Devices, Vol. 19, No. 4, pp. 501-507, Dec. 1996.
10 P. Tounsi, J. M. Dorkel, and P. Leturcq, "Simulation of power devices or circuits," The European Power Electronics Association, p. 155, 1993.
11 F. Profumo, A. Tenconi, S. Facelli, and B. Passerini, "Implementation and validation of a thermal model for analysis, design and characterisation of multichip power electronic devices," IEEE Trans. Ind. Appl., Vol. 35, No. 3, pp. 663-669, May/Jun. 1999.   DOI   ScienceOn
12 Y. C. Gerstenmaier and G. Wachutka, "A new procedure for the calculation of the temperature development in electronic system," European Conference on Power electronics and Applications (EPE), 1999.
13 G. L. Skibinski and A. S. William, "Thermal parameter estimation using recursive identification," IEEE Trans. Power Electron., Vol. 6, No. 2, pp. 228-239, Apr. 1991.   DOI   ScienceOn
14 J. W. Sofia, "Analysis of thermal transient data with synthesized dynamic models for semiconductor devices," IEEE Trans. Compon., Packag., Manuf. Technol. A*, Vol. 18, No. 1, pp. 39-47, Mar. 1995.   DOI   ScienceOn
15 Commission Electrotechnique International, "Valeur Limite et Caracteristiques Essentielles des Dispositifs A Semi-conducteur et Principes Generaux des Methodes de Mesure, Publication 147-2C, 1970.
16 A. Ammous, "Modelisation electrothermique de l'IGBT (transistor Bipolaire a Grille Isolee: Application a la simulation du court-circuit)," Ph.D. Dissertation, l'INSA de Lyon, France, $N^{\circ}$ d'ordre : 98ISAL 0075, 1998.
17 S. M. Sze, Physics of Semiconductor Devices, Wiley, 1981.
18 H. Bellaj, J. M. Dorkel, P. Tounsi, and Ph. Leturcq, "Validity and limits of the junction temperature concept for integrated power devices," THERMINIC'99, 1999.
19 S. Duong, C. Schaeffer, J. F. De Palma, and Ch. Mullert, "Etude du TGB en surcharge en vue de sa protection par fusible," in Proc. EPE94, 1994.
20 S. Duong, S. Rael, C. Schhaffer, and J. F. De Palma, "Short circuit behavior for PT an NPT IGBT devices-Protection against explosion of the case by fuses," in Proc. EPE'95, pp. 1.249-1.254, 1995.
21 A. Ammous, B. Allard, and H. Morel, "Transient temperature measurements and modeling of IGBT's under short circuit," IEEE Trans. Power Electron., Vol. 13, No. 1, pp 12-25, Jan. 1998.   DOI   ScienceOn
22 R. Krummer, S. Konard, J. Petzolt, and L. Lorenz, "Thermal investigation to the structure and the use of power modules," Power Conversion, pp. 445-453, May 1998.
23 P. Tounsi, J. M. Dorkel, and Ph. Leturcq, "Thermal modeling for electrothermal simulation of power devices or circuit," European Conference on Power electronics and Applications (EPE), pp. 155-160, 1993.
24 M. M. Hussein, D. J. Nelson, and A. Elshabini-Riad, "Thermal interaction of semiconductor devices on chopper clad ceramic substrates," IEEE Trans. Compon., Hybrids, Manufact. Technol.*, Vol. 15, No 5, pp. 651-657, Oct. 1992.   DOI
25 F. N. Masana, "A closed from solution of junction to substrate thermal resistance in semiconductor chips," IEEE Trans. Compon., Packag., Manuf. Technol. A*, Vol. 19, No. 4, pp. 539-545, Dec. 1996.   DOI   ScienceOn
26 F. N. Masana, "A new approach to the dynamic thermal modelling of semiconductor package," Microelectronic Reliability, Vol .41, No. 6, pp. 901-912, Jun. 2001.   DOI   ScienceOn
27 Kais Bellil, "Modelisation electrothermique a l'etat passant de composant de puissance integres ou de modules hybrides multi-puces," Ph.D. Dissertation, LAAS de CNRS, France, $N^{\circ}$ d'ordre : 511, 1999.
28 R. Schmidt and B. Nothhardjono, "High-end server low-temperature cooling," IBM J. Res. Devel, Vol. 46, No. 6, pp. 739-751, Nov. 2002.   DOI
29 M. Usui and M. Ishiko, "Simple approach of heat dissipation design for inverter module," in Proc. International Power Electronics Conference (IPEC 2005), pp. 1598-1603, 2005.
30 G. Hetsroni, A. Mosyak, and Z. Segal, "Nonuniform temperature distribution in electronic devices cooled by flow in parallel microchannels," IEEE Trans. Compon. Packag. Technol., Vol. 24, No. 1, pp 16-22, Mar. 2001.   DOI   ScienceOn
31 R. Schmidt, "Liquid Cooling is Back," Electronics Cooling, Vol. 11, No. 3, pp. 34-38, Aug. 2005.
32 R. Hocine, S. H. Pulko, A. Boudghene Stambouli, and A. Saidane, "TLM method for thermal investigation of IGBT modules in PWM mode," Microelectronic Engineering, Vol. 86, No. 10, pp. 2053-2062, Oct. 2009.   DOI   ScienceOn
33 J. W. Sofia, "Fundamentals of thermal resistance measurement," Analysis Tech, 1995.
34 J. W. Sofia, "Electrical thermal resistance measurement for hybrids and multi-chip packages," Analysis Tech, 1995.