• Title/Summary/Keyword: Thermal batteries

Search Result 206, Processing Time 0.027 seconds

The thermal impedance spectroscopy on Li-ion batteries using heat-pulse response analysis

  • Barsoukov Evgenij;Jang Jee Hwan;Lee Hosull
    • 한국전기화학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.145-161
    • /
    • 2001
  • Novel characterization of thermal properties of a battery has been introduced by defining its frequency-dependent thermal impedance function. Thermal impedance function can be approximated as a thermal impedance spectrum by analyzing experimental temperature transient which is related to the thermal impedance function through Laplace transformation. In order to obtain temperature transient, a process has been devised to generate external heat pulse with heating wire and to measure the response of battery. This process is used to study several commercial Li-ion batteries of cylindrical type. The thermal impedance measurements have been performed using potentionstat/galvanostate controlled digital signal processor, which is more commonly available than flow-meter usually applied for thermal property measurements. Thermal impedance spectra obtained for batteries produced by different manufactures are found to differ considerably. Comparison of spectra at different states of charge indicates independence of thermal impedance on charging state of battery. It is shown that thermal impedance spectrum can be used to obtain simultaneously thermal capacity and thermal conductivity of battery by non-linear complex least-square fit of the spectrum to thermal impedance model. Obtained data is used to simulate a response of the battery to internal heating during discharge. It is found that temperature inside the battery is by one-third larger that on its surface. This observation has to be considered to prevent damage by overheating.

  • PDF

Analysis of Effect of Surface Temperature Rise Rate of 72.5 Ah NCM Pouch-type Lithium-ion Battery on Thermal Runaway Trigger Time (72.5 Ah NCM계 파우치형 리튬이온배터리의 표면온도 상승률이 열폭주 발생시간에 미치는 영향 분석)

  • Lee, Heung-Su;Hong, Sung-Ho;Lee, Joon-Hyuk;Park, Moon Woo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.1-9
    • /
    • 2021
  • With the convergence of the information and communication technologies, a new age of technological civilization has arrived. This is the age of intelligent revolution, known as the 4th industrial revolution. The 4th industrial revolution is based on technological innovations, such as robots, big data analysis, artificial intelligence, and unmanned transportation facilities. This revolution would interconnect all the people, things, and economy, and hence will lead to the expansion of the industry. A high-density, high-capacity energy technology is required to maintain this interconnection. As a next-generation energy source, lithium-ion batteries are in the spotlight today. However, lithium-ion batteries can cause thermal runaway and fire because of electrical, thermal, and mechanical abuse. In this study, thermal runaway was induced in 72.5 Ah NCM pouch-type lithium-ion batteries because of thermal abuse. The surface of the pouch-type lithium-ion batteries was heated by the hot plate heating method, and the effect of the rate of increase in the surface temperature on the thermal runaway trigger time was analyzed using Minitab 19, a statistical analysis program. The correlation analysis results confirmed that there existed a strong negative relationship between each variable, while the regression analysis demonstrated that the thermal runaway trigger time of lithium-ion batteries can be predicted from the rate of increase in their surface temperature.

Numerical Study on Thermal Runaway by Temperatures and Appearance Sizes in NCM622 and LFP Cylindrical Lithium-ion Batteries (NCM622과 LFP 리튬이온 배터리의 주변 온도와 셀 크기에 따른 열폭주 현상에 대한 수치해석적 연구)

  • Kim, Woo-Young;Kim, Nam-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.46-58
    • /
    • 2021
  • As accidents with thermal runaway (TR) of lithium-ion batteries occur sporadically, the safety concern is the main obstacle that hinders the large-scale applications of lithium ion batteries. In most accidents, the TR of a single cell occurred first, and then dissipated the heat to the surroundings and triggered the TR of adjacent cells, resulting in TR propagation. Therefore, it is important to understand the mechanism of TR propagation and determine the key parameters during TR propagation in a battery pack. In this study, we performed a numerical analysis on the thermal runaway phenomenon by cathode active materials and appearance sizes in cylindrical lithium-ion batteries using a two-dimensional analysis model. The model results showed that the TR propagation of 21700 type cells (21 mm diameter, 70 mm height) occurs more rapidly than 46800 type cells (46 mm diameter, 80 mm height) and the LFP cell has higher thermal safety than the NCM cell. Especially, we found that the effect of the separator on the occurrence of TR is negligible.

Effect of Particle Size of Cathode Materials on Discharge Properties of Thermal Batteries (양극 활물질의 입도에 따른 열전지 출력 특성 연구)

  • Lee, Jungmin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.399-406
    • /
    • 2014
  • Thermal batteries are used for military power sources that require robustness and long storage life such as missiles and torpedoes. $FeS_2$ powder is currently used for cathode materials because of its high specific energy density, environmental non-toxicity and low cost. However, large particle size of conventional $FeS_2$ has been deterred its possible application for higher power thermal batteries. In order to improve the power density, high energy ball milling of $FeS_2$ has been introduced to crush the micron-sized $FeS_2$. Discharge characteristics of the single cells fabricated with nano-materials and conventional $FeS_2$ powder were evaluated.

A Novel Separator Membrane for Safer Lithium-ion Rechargeable Batteries

  • Lee, Sang-Young;Kim, Seok-Koo;Hong, Jang-Hyuck;Shin, Byeong-Jin;Park, Jong-Hyuck;Sohn, Joon-Yong;Jang, Hyun-Min;Ahn, Soon-Ho
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.69-70
    • /
    • 2006
  • In lithium-ion batteries, separator membrane's, main role is to physically isolate a cathode and an anode while maintaining rapid transport of ionic charge carriers during the passage of electric current. As far as battery safety is concerned, the electrical isolation of electrodes is most crucial since unexpected short-circuits across the membrane induces hot spots where thermal runaway may break out. Internal short-circuits are generally believed to occur by protrusions on the electrode surface either by unavoidable deposits of metallic impurities or by dendritic lithium growth during battery operation. Another cause is shrinkage of the separator membrane when exposed to heat. If separator membrane can be engineered to prevent the internal short-circuit, it will not be difficult to improve lithium-ion batteries' safety. Commonly the separators employed in lithium-ion batteries are made of polyethylene (PE) and/or polypropylene (PP). These materials have terrible limitations in preventing the fore-mentioned internal short-circuit between electrodes due to their poor dimensional stability and mechanical strength. In this study we have developed a novel separator membrane that possesses very high thermal and mechanical stability. The cells employing this separator provided noticeable safety improvement in the various abuse tests.

  • PDF

Thermal Management of a Ni/MH Battery Module for Electric Vehicle (전기자동차용 Ni/MH 전지 Module의 열관리기술)

  • Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1034-1040
    • /
    • 1997
  • Temperature distribution of battery module consists of 11 batteries of 90Ah rate is analyzed using commercial software NISA II. Equivalent thermal resistance network is used to reduce the number of element in calculating heat transfer through a medium composed of several different thermal conductivity layers. Orthotropic model is used to put different thermal conductivity values according to Cartesian coordinate. Aluminum cooling fins are inserted in the middle of batteries to reduce battery module temperature. The cooling fin at the end of the module does not necessary in reducing maximum temperature. Combined effect of front and side cooling fin is analyzed to reduce the temperature difference among batteries. The maximum temperature difference among batteries is reduced within $3^{\circ}C$ when 4 aluminum cooling tin of 1mm thickness is inserted in battery module.

  • PDF

Characteristics of Ceramic Separator Impregnated by Molten Salt for Thermal Batteries (열전지용 세라믹 분리막의 용융염 전해질 함침 특성)

  • Kang, Seung-Ho;Im, Chae-Nam;Park, Byung-Jun;Cho, Sung-Baek;Cheong, Hae-Won;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.467-472
    • /
    • 2015
  • Thermal batteries are primary power sources for military applications requiring high reliability, robustness and long storage life. Conventional electrodes for thermal batteries are prepared by compacting powder mixtures into pellets. Separator is composed of halide mixture, such as LiCl-KCl eutectic salt, blended with MgO to immobilize the molten salt. In order to increase the power density and energy density, the resistance of electrolyte should be reduced because the resistance of electrolyte is predominant in thermal batteries. In this study, wetting behaviors and impregnation weight of molten salts as well as the micro structures of ceramic felt were investigated to be applicable to thin electrolyte. Discharge performances of single cell with the ceramic separator impregnated by molten salt were evaluated also. Zirconia felt with high porosity and large pore outperformed alumina felt in wetting characteristics and molten salt impregnation as well as discharge performances. Based on the results of this study, ceramic felt separator impregnated with molten salt have revealed as an alternative of conventional thick MgO based separator with no conspicuous sign of thermal runaway by short circuit.

State of the Art and Research Trends on Electrode Materials of Thermal Batteries (열전지 기술 현황과 전극재료 개발 동향)

  • Kang, Seung-Ho;Park, Byung-Jun;Im, Chae-Nam;Cho, Sung-Baek;Cheong, Hae-Won;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.765-770
    • /
    • 2015
  • Thermal batteries are heat-activated primary reserve power sources that use inorganic salt as electrolytes and specially designed to meet extremely long or environmentally severe storage requirements. They are primarily used to deliver high power for relatively short periods in such applications as fuzes, missiles, ordnance and other military applications. In this paper, we describe a general overview and research trends on electrode materials for thermal batteries.

Electrochemical Properties of Lithium Anode for Thermal Batteries (열전지용 리튬음극의 전기화학적 특성)

  • Im, Chae-Nam;Yoon, Hyun Ki;Ahn, Tae-Young;Yeo, Jae Seong;Ha, Sang Hyeon;Yu, Hye-Ryeon;Baek, Seungsu;Cho, Jang Hyeon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.696-702
    • /
    • 2018
  • Recently, the current thermal battery technology needs new materials for electrodes in the power and energy density to meet various space and defense requirements. In this paper, to replace the pellet type Li(Si) anode having limitations of the formability and capacity, electrochemical properties of the lithium anode with high density for thermal batteries were investigated. The lithium anode (Li 17, 15, 13 wt%) was fabricated by mixing the molten lithium and iron powder used as a binder to hold the molten lithium at $500^{\circ}C$. The single cell with 13 wt% lithium showed a stable performance. The 2.06 V (OCV) of the lithium anode was significantly improved compared to 1.93 V (OCV) of the Li(Si) anode. Specific capacities during the first phase of the lithium anode and Li(Si) were 1,632 and $1,181As{\cdot}g^{-1}$, respectively. As a result of the thermal battery performance test at both room and high temperatures, the voltage and operating time of lithium anode thermal batteries were superior to those of using Li(Si) anode thermal batteries. The power and energy densities of Li anode thermal batteries were also remarkably improved.

Electrochemical Properties of Yttria Stabilized Zirconia Binder for Thermal Batteries (이트리아 안정화 지르코니아 바인더에 의한 열전지 전기화학적 특성)

  • Kim, Jiyoun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.331-337
    • /
    • 2017
  • Thermal batteries, reserve power source, is activated by melting of molten salt at the temperature range of $350{\sim}550^{\circ}C$. To immobile the molten state electrolyte when the thermal battery is activated, the binder must be added in electrolyte. Usually, molten salts include 30~40 wt% of MgO binder to ensure electrical insulation as well as safety. However, the conventional MgO binder tends to increase ionic conductive resistance and thus the inclusion of the binder increases the total impedance of the battery. This paper mainly focused on the study of yttria stabilized zirconia (YSZ) as an alternative binder for molten salt. The chemical stability between the molten salt and YSZ is measured by XRD and DSC. And the sufficient path for ionic conduction on molten salt could be confirmed by the enhanced wetting behavior and the enlarged pore size of YSZ. The electrochemical properties were analyzed using single cell tests so that it showed the outstanding performance than that using MgO binder.