• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.033 seconds

Investigation of physical characteristics for Al2O3:C dosimeter using LM-OSL

  • Kim, Myung-Jin;Lee, Young-Ju;Kim, Ki-Bum;Hong, Duk-Geun
    • Analytical Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.131-138
    • /
    • 2019
  • This paper reports results on the physical properties of a powder type of $Al_2O_3:C$ commonly used as a luminescence dosimeter using the LM-OSL technique. On the analysis with the general order kinetics model, the LM-OSL signal measured appeared to be composed of three components (fast, medium, slow) showing the largest area in the medium component. The photoionization cross sections of three components were distributed between $10^{-19}{\sim}10^{-21}cm^2$. The values of the thermal assistance energy were evaluated the largest in slow component and the smallest in fast component, which indicates the electrons trapped in defects attributed to slow component should be the most sensitive to thermal vibration among three components. In illumination to blue light, the fast component showed a rapid linear decay and completely disappeared after light exposure time of about 5 s. The medium component decayed with two exponential elements but the slow component did not observed any noticeable change until light exposure time of 40 s. In a dose response study, all components exhibited a linear behaviour up to approximately 10 Gy.

Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT

  • Semmah, Abdelwahed;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.89-98
    • /
    • 2019
  • In this work, the thermal buckling characteristics of zigzag single-walled boron nitride (SWBNNT) embedded in a one-parameter elastic medium modeled as Winkler-type foundation are investigated using a nonlocal first-order shear deformation theory (NFSDT). This model can take into account the small scale effect as well as the transverse shear deformation effects of nanotubes. A closed-form solution for nondimensional critical buckling temperature is obtained in this investigation. Further the effect of nonlocal parameter, Winkler elastic foundation modulus, the ratio of the length to the diameter, the transverse shear deformation and rotary inertia on the critical buckling temperature are being investigated and discussed. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the thermal buckling properties of boron nitride nanotubes.

Comparative Analysis on the Surface Property of SKD 61 Die-casting Steel Using Multilayer PVD Coating (다층 PVD 코팅을 이용한 SKD 61다이캐스팅 강의 표면 특성 비교 분석)

  • Kim, Seung Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.43-50
    • /
    • 2021
  • The properties of materials which are widely used in industry fields like automobile, shipbuilding, casting, and electronics are strongly needed to have higher surface hardness, lower surface roughness, and higher compressive residual stress. As mentioned above, for the purpose of satisfying three factors, a variety of researches with respect to surface improvement have been actively studied and applied to every industry. SKD61 which is mostly used for die casting process of cold chamber method must meet a countless number of problems which are thermal, mechanical and chemical from highly specific working environment at high temperature over 600℃. Above all, in case of plunger sleeves used for die casting process, thermal fatigue has a bad effect on the surface of an inlet where molten metal is repeatedly injected. On account of it, plunger sleeves cause manufacturers to deteriorate quality of products. Therefore, in this paper, to improve the surface of an inlet of plunger sleeve, multilayer PVD coating using Ti, Cr and Mo is suggested. Furthermore, The surface characteristics such as surface roughness(Rsa, Rsq), surface hardness(HRB, HRC) and residual stress using XRD(X-ray diffractometer) of coated samples and specimens are studied and discussed.

Numerical Analysis of the Sessile Droplet Evaporation on Heated Surfaces (가열된 표면에 고착된 액적의 증발 특성에 관한 수치해석 연구)

  • Jeong, Chan Ho;Lee, Hyung Ju;Yun, Kuk Hyun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Droplet evaporation has been known as a common phenomenon in daily life, and it has been widely used for many applications. In particular, the influence of the different heated substrates on evaporation flux and flow characteristics is essential in understanding heat and mass transfer of evaporating droplets. This study aims to simulate the droplet evaporation process by considering variation of thermal property depending on the substrates and the surface temperature. The commercial program of ANSYS Fluent (V.17.2) is used for simulating the conjugated heat transfer in the solid-liquid-vapor domains. Moreover, we adopt the diffusion-limited model to predict the evaporation flux on the different heated substrates. It is found that the evaporation rate significantly changes with the increase in substrate temperature. The evaporation rate substantially varies with different substrates because of variation of thermal property. Also, the droplet evaporates more rapidly as the surface temperature increases owing to an increase in saturation vapor pressure as well as the free convection effect caused by the density gradient.

Analysis of Flow and Thermal Mixing Responses on Hot Water Discharge by Quencher Devices into an Annular Water pool (원환풀내에서 Quencher Device에 의한 고온수 분출로 일어나는 혼합유동에 관한 연구)

  • Choi, Seong-Seok;Kim, Jong-Bo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • One of the problems with the Boiling Water Reactor involves the flow and thermal mixings in the suppression water pool high pressure steam discharge into the pool in case of emergency core relief. Varioos heat sensitive devices and pumps for the reactor core cooling are installed in the middle of the suppression pool. Especially the pumps utilize pool water in order to cool the reactor core in emergency cases. In this case, the water temperature for the reactor cool ins should be below a certain temperature specified by the reactor design. In the present investigation, in other to determine the optimum locations of these pumping devices, numerical solutions have been obtained for the model to determine the f low mixing characteristics. Experimental investigations have also been carried out for the flow mixing and for the thermal mixing in the pool during the discharge. Considering that the discharge steam through the Quenching Device becomes hot water immediately in the water pool, the steam- equivalent hot water has been utilized. Examining these characteristices, it becomes possible to deform me the best locations for RCIC, LPCI , HPCI pumps in the suppression water pool for the emermency reactor core cooling.

  • PDF

Synthesis of Almond Shell Biochar-Based Shape-Stable Composite Phase Change Material Using Capric Acid for Thermal Energy Storage (열 에너지 저장용 카프르산을 이용한 아몬드 껍질 바이오차 기반의 안정화 형태 상변이 물질의 성능)

  • Adnin Raihana Jannat;Soumen, Mandal;Lee, Han Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.51-52
    • /
    • 2023
  • A new shape-stable composite phase change material (PCM) have been produced via an easy and simple vacuum impregnation method. The composite PCM have been derived from almond shell biochar (ASB) as supporting material and capric acid (CA) as phase change material. Cost effective waste almond shells (AS) are renewable, eco-friendly, and rich in pores which enhance the possibility of CA impregnation. Therefore, in this study, three different ratios of CA (1:1, 1:2 and 1:3) have been incorporated in ASB to produce shape-stabilized phase change composites (ASCAs). Different techniques such as scanning electron microscopy (SEM), Fourier transform-infrared spectroscope (FT-IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) have been applied to evaluate the characteristics of ASCAs. The attained composite PCMs have exhibited shape stability with high latent heat storage, that makes it suitable for thermal energy storage applications.

  • PDF

Development Trends of Thermal Control Design and Analysis of Robotic Arm Payload for Spacecraft (인공위성 로봇팔 탑재체의 열 제어 설계 및 해석 개발 동향 )

  • Han-Seop Shin;Hae-Dong Kim
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.27-47
    • /
    • 2024
  • In the New space era, satellites are being developed to perform on-orbit service (OOS) missions. Various missions for orbital service include failure repair, refueling, towing, component replacement, and space construction, and in order to do so, a robot arm payload must be mounted. Unlike conventional satellite payloads, the robot arm payload is not move in a fixed state, but is a payload that must move continuously to perform the mission. It is also characterized by the need to perform the mission while being directly exposed to outer space, rather than existing inside the structure of the satellite. Due to the characteristics of these payloads, thermal design and interpretation that can be operated smoothly in an extreme space thermal environment is essential, but there are not many papers on thermal design and interpretation of the robot arm. This paper introduces and summarizes cases of thermal design and interpretation of robot arm payloads developed so far, and finally, it intends to suggest directions for thermal design and interpretation of robot arm payloads to be developed in the future.

Estimating for Properties of Insulating Degradation for Cellulose paper with Aging Temperature and Correlation by Statistical Treatment (셀룰로오스 절연지의 열화온도에 따른 절연특성 및 통계처리에 의한 상관관계 규명)

  • Kim, Jae-Hoon;Kim, Dae-Sik;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.912-917
    • /
    • 2010
  • It was known that oil-filled transformer's life depended on insulating paper which was applied to transformers for insulating of transformer. Therefore when paper was aged, its electrical, mechanical and chemical characteristics were changed. Especially if operating temperature was high, paper was quickly damaged. As cellulose paper which was mainly used for solid insulation of transformers was degraded, the cellulose polymer chains broke down into shorter lengths and gases such as CO, $CO_2$, $CH_4$, $C_2H_4$ and so on were produced from paper. Also by-product known as furan compounds were producted from paper and it were dissolved within insulating oil. In this paper accelerating aging cell was aged during 60 hours at 100, 150, 180 and $200^{\circ}C$, respectively, so evaluating the chemical characteristics of cellulose paper by thermal. An it were performed analysis such as tensile strength(TS), dissolved gas analysis(DGA) and high performance liquid chromatography(HPLC). Also for analyzing of correlation between insulating degradation characteristics, it was performed linear regression method as statistical treatment.

Numerical Predictions of Fire Characteristics of Passenger Train Fire in an Underground Subway Tunnel, Depending on Change of Location of Ventilation Facility (지하철 터널내의 객차 화재발생시 환기실 위치변화에 따른 화재특성의 수치적 연구)

  • Son, Bong-Sei;Chang, Hee-Chul
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • The study is to perform numerical analysis of train fire characteristics in an underground subway tunnel, depending the different locations of ventilation facility. To study the characteristics of train fire, two kinds of worst-case scenarios are selected, based on escape distance, escape time, and fire zone, and trends and thermal environments of tunnel are analyzed by changing the locations of ventilation facility for times. Fire characteristics is calculated by using FLUENT v.6.3.26, and turbulent flow is calculated by using the standard k-${\varepsilon}$ model. The numerical results show distribution of carbon monoxide concentration, temperature, and velocity. The results of this study will contribute to building the most suitable ventilation systems when designing subway stations and tunnels.

Electrical Characteristics of MIS Type $Pb_{1-x}Sn_xTe$ (MIS형 $Pb_{1-x}Sn_xTe$ Diode의 전기적 특성에 관한 연구)

  • Kim, Tae-Seoung;Park, Jong-Kun;Yeo, In-Seon;Lee, Jin;You, Rim
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.187-190
    • /
    • 1987
  • This paper is for the charge storage effect and C-V characteristics of MIS type diode which is the basic structural unit of charge-coupled device after growing the $Pb_{1-x}Sn_xTe$ crystal. $Pb_{1-x}Sn_xTe$ singlecrystal dbtained from the horizental furnace using Bridgman method. To judge whether the grown singlecrystal is suitable for specimen or not, it was investigated by X-ray diffraction analysis, thermogravimetry and differential thermal analysis. The C-V characteristics of the specimen caused to anodic oxidation was the best when the insulator film's depth was 250[$\AA$]. Measuring the C-V characteristics aftermanufacturing MIS type diode resulted that the whole capacitance was the largest when the supply voltage was low, 0.3[V] and the capacitance also varied according to the variance frequence when the supply voltage is over 0.5[V]. From the above result, even if the supply voltage is low, the $Pb_{1-x}Sn_xTe$ also have a good charge storage effect.

  • PDF