Browse > Article
http://dx.doi.org/10.5806/AST.2019.32.4.131

Investigation of physical characteristics for Al2O3:C dosimeter using LM-OSL  

Kim, Myung-Jin (Archaeological Science Institute, RADPION Inc.)
Lee, Young-Ju (Radiation Technology Institute, Neosiskorea Co. Ltd.)
Kim, Ki-Bum (Institute of Liberal Education, Kangwon National University)
Hong, Duk-Geun (Dept. of Physics, Kangwon National University)
Publication Information
Analytical Science and Technology / v.32, no.4, 2019 , pp. 131-138 More about this Journal
Abstract
This paper reports results on the physical properties of a powder type of $Al_2O_3:C$ commonly used as a luminescence dosimeter using the LM-OSL technique. On the analysis with the general order kinetics model, the LM-OSL signal measured appeared to be composed of three components (fast, medium, slow) showing the largest area in the medium component. The photoionization cross sections of three components were distributed between $10^{-19}{\sim}10^{-21}cm^2$. The values of the thermal assistance energy were evaluated the largest in slow component and the smallest in fast component, which indicates the electrons trapped in defects attributed to slow component should be the most sensitive to thermal vibration among three components. In illumination to blue light, the fast component showed a rapid linear decay and completely disappeared after light exposure time of about 5 s. The medium component decayed with two exponential elements but the slow component did not observed any noticeable change until light exposure time of 40 s. In a dose response study, all components exhibited a linear behaviour up to approximately 10 Gy.
Keywords
$Al_2O_3:C$; LM-OSL; photoionization cross-section; thermal assistance energy; optical sensitivity; radiation response;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. S. Akselrod, N. Agersnap Larsen, V. Whitley and S. W. S. Mckeever, J. Appl. Phys., 84(6), 3364-3373 (2012).   DOI
2 M. S. Akselrod, V. S. Kortov, D. J. Kravetsky and V. I. Gotlib, Radiat. Prot. Dosim., 33(1), 119-122 (1990).   DOI
3 S. W. S. Mckeever, Nucl. Instr. Methods Phys. B, 184, 29-54 (2011).   DOI
4 J. M. Edmund and C. E. Andersen, Radiat. Meas., 42, 177-189 (2007).   DOI
5 E. Bulur, Radiat. Meas., 26(5), 701-709 (1996).   DOI
6 E. Bulur, L. Botter-Jensen ,and A. S. Murray, Radiat. Meas., 33, 715-719 (2001).   DOI
7 M. L. Chithambo, J. Phys. D: Appl. Phys., 40. 1874-1879 (2007).   DOI
8 R. Chen and S. W. S. Mckeever, 'Theory of thermoluminescence and related phenomena', World Scientific Publishing, 1997.
9 G. I. Dallas, G. S. Polymeris, E. C. Stefanaki, D. Afouxenidis, N. C. Tsirliganis, and G. Kitis, Radiat. Meas., 43, 335-340 (2008).   DOI
10 E. Bulur, L. Botter-Jensen, and A. S. Murray, Radiat. Meas., 32, 407-411 (2000).   DOI
11 L. Botter-Jenson, E. Bulur, G. A. T. Duller, and A. S. Murray, Radiat. Meas., 32, 523-528 (2000).   DOI
12 V. H. Whitley and S. W. S. Mckeever, Radiat. Prot. Dosim., 100(1-4), 61-66 (2002).   DOI
13 N. A. Spooner, Radiat. Meas., 23, 593-600 (1994).   DOI
14 F. Urbach, Phys. Rev., 92, 1324 (1953).   DOI
15 M. J. Kim, K. W. Song, and D. G. Hong, SAEMULLI, 53, 171-177 (2006).
16 M. L. Chithambo, C. Seneza, and J. M. Kalita, Radiat. Meas., 105, 7-16 (2017).   DOI