• Title/Summary/Keyword: Thermal Simulation

Search Result 2,548, Processing Time 0.035 seconds

A Study on the Thermal Performance Analysis of Curtain Wall Office Building Considering the Thermal Bridges (열교부위를 고려한 커튼월 사무소 건물의 열성능 해석에 관한 연구)

  • Shin, U-Cheul;Kim, Seung-Chul;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.95-100
    • /
    • 2011
  • Currently, office buildings in Korea tend to adopt as their outer wall the curtain wall structure which can be easily constructed and has beautiful external appearance as well. However, the problem is that the curtain wall structure does not have a uniform composition unlike the wall of existing reinforced concrete structures and has a frame made of metal with high heat conduction. Therefore, it is expected that the structure will be highly influenced by the thermal bridge. Thereupon, this study analyzes how to set up the composition of the wall system and heat transmission rate in consideration of the thermal characteristics of the curtain wall structure and applies it in practice by simulation in order to propose a guideline for the energy simulation method of the curtain wall structure and analyze its differences from existing simulation methods.

Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model

  • Salah, Fethi;Boucham, Belhadj;Bourada, Fouad;Benzair, Abdelnour;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.805-822
    • /
    • 2019
  • In this work, a simple four-variable integral plate theory is employed for examining the thermal buckling properties of functionally graded material (FGM) sandwich plates. The proposed kinematics considers integral terms which include the effect of transverse shear deformations. Material characteristics and thermal expansion coefficient of the ceramic-metal FGM sandwich plate faces are supposed to be graded in the thickness direction according to a "simple power-law" variation in terms of the "volume fractions" of the constituents. The central layer is always homogeneous and consists of an isotropic material. The thermal loads are supposed as uniform, linear, and nonlinear temperature rises within the thickness direction. The influences of geometric ratios, gradient index, loading type, and type sandwich plate on the buckling properties are examined and discussed in detail.

Development of a simulation program for the analysis of a thermal networking operation in District Heating (집단에너지 열연계운전 분석을 위한 시뮬레이터 개발)

  • Im, Yong-Hoon;Park, Hwa-Choon;Chung, Mo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.825-832
    • /
    • 2008
  • A simulation program is developed for analysing thermal networking process between the District heating and the CES(Community Energy Supply) systems. The effects of thermal networking on the District heating facilities previously being operated are implemented using mathematical correlations in terms of the fuel consumption and energy load such as heating and electricity. The operational characteristics according to the prime movers is modeled based on the materials of efficiency as a function of operational load. The unit energy load model is also developed extensively for several building types such as apartment complex, hotel, hospital, buildings for business and commercial use respectively. The specific features of the newly developed program in simulation of thermal networking process in district heating is described in terms of the reliability and the easiness for operating it etc.

  • PDF

Incremental extended finite element method for thermal cracking of mass concrete at early ages

  • Zhu, Zhenyang;Zhang, Guoxin;Liu, Yi;Wang, Zhenhong
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.33-42
    • /
    • 2019
  • Thermal cracks are cracks that commonly form at early ages in mass concrete. During the concrete pouring process, the elastic modulus changes continuously. This requires the time domain to be divided into several steps in order to solve for the temperature, stress, and displacement of the concrete. Numerical simulations of thermal crack propagation in concrete are more difficult at early ages. To solve this problem, this study divides crack propagation in concrete at early ages into two cases: the case in which cracks do not propagate but the elastic modulus of the concrete changes and the case in which cracks propagate at a certain time. This paper provides computational models for these two cases by integrating the characteristics of the extended finite element algorithm, compiles the corresponding computational programs, and verifies the accuracy of the proposed model using numerical comparisons. The model presented in this paper has the advantages of high computational accuracy and stable results in resolving thermal cracking and its propagation in concrete at early ages.

LARGE EDDY SIMULATION OF THERMAL STRIPING IN THE UPPER PLENUM OF FAST REACTOR (대와동모사법을 사용한 고속로 상부플레넘에서의 thermal sriping 해석)

  • Choi, S.K.;Han, J.W.;Kim, D.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.29-36
    • /
    • 2014
  • A computational study of a thermal striping in the upper plenum of PGSFR(Prototype Generation-IV Sodium-cooled Fast Reactor) being developed at the KAERI(Korea Atomic Energy Research Institute) is presented. The LES(Large Eddy Simulation) approach is employed for the simulation of thermal striping in the upper plenum of the PGSFR. The LES is performed using the WALE (Wall-Adapting Local Eddy-viscosity) model. More than 19.7 million unstructured elements are generated in upper plenum region of the PGSFR using the CFX-Mesh commercial code. The time-averaged velocity components and temperature field in the complicated upper plenum of the PGSFR are presented. The time history of temperature fluctuation at the eight locations of solid walls of UIS(Upper Internal Structure) and IHX(Intermediate Heat eXchanger) are additionally stored. It has been confirmed that the most vulnerable regions to thermal striping are the first plate of UIS. From the temporal variation of temperature at the solid walls, it was possible to find the locations where the thermal stress is large and need to assess whether the solid structures can endure the thermal stress during the reactor life time.

Thermal Aware Buffer Insertion in the Early Stage of Physical Designs

  • Kim, Jaehwan;Ahn, Byung-Gyu;Kim, Minbeom;Chong, Jongwha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.397-404
    • /
    • 2012
  • Thermal generation by power dissipation of the highly integrated System on Chip (SoC) device is irregularly distributed on the intra chip. It leads to thermal increment of the each thermally different region and effects on the propagation timing; consequently, the timing violation occurs due to the misestimated number of buffers. In this paper, the timing budgeting methodology considering thermal variation which contains buffer insertion with wire segmentation is proposed. Thermal aware LUT modeling for cell intrinsic delay is also proposed. Simulation results show the reduction of the worst delay after implementing thermal aware buffer insertion using by proposed wire segmentation up to 33% in contrast to the original buffer insertion. The error rates are measured by SPICE simulation results.

A Thermal Model for Electrothermal Simulation of Power Modules

  • Meng, Jinlei;Wen, Xuhui;Zhong, Yulin;Qiu, Zhijie
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.441-446
    • /
    • 2013
  • A thermal model of power modules based on the physical dimension and thermal properties is proposed in this paper. The heat path in the power module is considered as a one-dimensional heat transfer in the model. The method of the parameters extraction for the model is given in the paper. With high speed and accuracy, the thermal model is suit for electrothermal simulation. The proposed model is verified by experimental results.

A Study on the Development of Cooling Simulation Program for Thermal Environmental Chamber (열환경챔버의 냉방 시뮬레이션 프로그램 개발에 관한 연구)

  • 이한홍
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.108-114
    • /
    • 1999
  • The thermal environmental chamber has been using in maintaining weather condition keeping thermal capacity under heating and cooling load fluctuation and for the performance testing of cooling system or air-conditioner on artificial envi-ronment. In ordder to make the various environmental conditions in the thermal environmental chamber the proper cooling system is necessary to eliminate the heating load produced inside the chamber and to maintain the designed environmental condition. For this reason the optimal design of cooling system and the prediction of performance is also required. This paper describes the prediction of performance of cooling system in the thermal environmental chamber with the capacity of 37,000kcal/hr which is developed for the test of performance in heating mode of heat pump system, In the results this paper is trying to develop simulation program on the base of mathematical models and which can be applied effectively to the optimal design of cooling system and prediction of performance to the inside and outside change of envi-ronmetal load.

  • PDF

Application of Thermal Discharge Dispersion Model on Cheonsu Bay (천수만 해역에서 온배수 확산모델의 적용)

  • 박영기
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.169-180
    • /
    • 1995
  • This Daper presents effective simulation of the dispersion of thermal discharge which can be relesed at Boryong power plant. Applied numerical models are finite difference method for hydrodynamic analysis and Masch-model comprised of conditions for ambient current velocity. Application of these models is done in Cheonsu Bay Summing up the results of this study are as follows; 1. It is found that the result for measurements of temperature appears high at southwardly Songdo on flood. The reason is that tidal currents which flowed north direction were accompanied with southwardly dispersed thermal discharge. A minute Particle of thermal Plume has a tendency to dispels inward Deacheon Bay. 2. According to the results of numerical experiment, maximum distance for thermal discharge dispersion appeared 10.8 km at lower part and 8.6 km at upper part with power plant outlet as starting point. 3. Comparative the numerical simulation and Airbone Multispectral Scanner indicated that thermal discharge should be verified separative phenomena. The simulated results were compared with field data set showing good agreement. It is concluded that these model can be simulated well.

  • PDF

Mathematical Simulation on Thermal Performance of Packed Bed Solar Energy Storage System (Packed Bed 태양에너지 저장시스템의 열성능에 관한 수학적 시뮬레이션)

  • KUMAR, ANIL;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.331-338
    • /
    • 2015
  • Solar air heaters (SAHs) are simple in design and widely used for solar energy collection devices, and a packed bed is one of typical solar energy storage systems of thermal energy captured by SAHs. This paper presents mathematical modeling and simulation on the thermal performance of various packed bed energy storage systems. A MATLAB program is used to estimate the thermal efficiency of packed bed SAH. Among the various packed bed energy storage systems considered, the wire mesh screen packed bed SAH shows the best thermal efficiency over the entire range of design conditions. The maximum of thermal efficiency of packed bed SAH with wire mesh screen matrices has been found to be 0.794 for Re=2000 - 20000 and ${\Delta}T/I=0.002-0.02$.