• 제목/요약/키워드: Thermal Performance Index

검색결과 118건 처리시간 0.024초

태양일사가 실내공간의 열적 쾌적성과 환기성능에 미치는 영향에 관한 연구 (The study on the effect of the solar radiation on thermal comfort and ventilation performance in room space)

  • 연성현;이효준;리광훈
    • 한국가시화정보학회지
    • /
    • 제14권1호
    • /
    • pp.19-26
    • /
    • 2016
  • Modern people spend much time at indoor space. So, People want to make better indoor air condition. But the facade of building is made of glass to be seen urbanely, the effect of solar radiation makes indoor environment worse. This study designs an open space affected by solar radiation with 4-way cassette air-conditioner. Using numerical simulation, this paper investigates thermal comfort and ventilation performance with discharge angles $30^{\circ}$ and $45^{\circ}$. To study thermal comfort, this paper studies distribution of velocity, temperature and effective draft temperature. Also, this paper introduces concept of air age to study ventilation performance. The flow influenced by solar radiation determines thermal comfort and ventilation performance in room space. This study shows that discharge angle of 45 degree has better thermal comfort and ventilation performance than that of 30 degree.

Effect of Partial Replacement of Soybean and Corn with Dietary Chickpea (Raw, Autoclaved, or Microwaved) on Production Performance of Laying Quails and Egg Quality

  • Sengul, Ahmet Yusuf;Calislar, Suleyman
    • 한국축산식품학회지
    • /
    • 제40권3호
    • /
    • pp.323-337
    • /
    • 2020
  • This study was conducted to investigate whether adding different levels of raw or differently processed chickpea into different diets of laying quails affected live weight, feed intake, feed efficiency, egg weight and internal and external egg quality. Chickpea was used as raw, autoclaved or microwave-processed, and it was involved in the diets on two different levels (20% and 40%). The sample was divided into 7 groups including the control, 20% and 40% raw, 20% and 40% autoclaved, and 20% and 40% microwave-processed groups. 336 ten-week-old female laying quails were used in the study, and the experiment continued for 19 weeks. In the study, the differences among the groups were insignificant in terms of live weight, feed intake, feed efficiency, egg weight and egg quality characteristics such as shell thickness, shell weight, yolk weight, yolk color and albumin index. The differences were significant in terms of the shape index, Haugh unit (p<0.05) and yolk index (p<0.01). Consequently, it was observed that different thermal processes on chickpeas did not usually have a significant effect on the yield performance of the quails, and the results that were obtained were similar to the other groups. However, it was determined that some egg quality characteristics were affected by the autoclaving and microwaving processes. Between the thermal processes, it may be stated that autoclaving provided better results.

실내(室內) 온열환경지표(溫熱環境指標)의 평가방법에 관한 연구 (A Study on the Evaluation Methods of Indoor Thermal Comfort Index in Building)

  • 정창원;호리코시 데츠스미;윤인;최영식
    • 한국산업융합학회 논문집
    • /
    • 제2권2호
    • /
    • pp.11-21
    • /
    • 1999
  • This objective of this paper is to investigate the evaluation and indiction of human thermal comfort in building environment. The issue of defining the boundaries of acceptable thermal comfort conditions in buildings and urban may have significant implication for building design and also may have urban design by climate considerations. And then it is to apply the thermal comfort condition to environmental design by using passive methods in Korea. Since 1920. architects have conducted studies to measure thermal comfort in houses under hot and humid conditions, while industrial hygienists have studied the effects of temperature and humidity on the performance of factory workers. Thermal comfort can be influenced by many variables. This paper conducted to review the previous researches and the human heat balance equation, and to analyse in order to reveal the meaning and usage of the thermal comfort index in two traditional essays, Fanger's PMV and Gagge's ET* Their comfort indexes compared with each other. They were based on human heat balance equation and psychological and physiological responses in the laboratory tests. The researchers and the architectural engineers using thermal comfort index shall be careful in decided the use of indexes and be necessary to recognize the value concept of the design criteria for thermal comfort. Therefore, The opinion of the authors is that different comfort standards have to apply for each building and urban with different climatic conditions.

  • PDF

초음파 열지수 측정용 조직모사 물질의 성능계수 (Performance Parameter of Tissue Mimicking Material measuring Ultrasonic Thermal Index)

  • 김용태;조문재;윤용현;김호철
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 추계학술발표대회논문집 제23권 2호
    • /
    • pp.369-370
    • /
    • 2004
  • 초음파의 조차에 의한 인체내부의 온도상승의 측도로 열지수(thermal index)가 사용되고 있으며, 이는 주파수 및 음향파워에 의존한다. 초음파 조사에 의한 인체내부의 온도상승을 평가하는데 사용되는 재료를 조직 모사 물질이라 한다. 본 논문아사는 단위 음향파워에 대한 온도 변화인 열 감도(thermal sensitivity)를 새로이 정의하였으며, 이 물리량으로 조직모사물질의 성능을 평가 할 수 있다는 것을 제안하고자 한다.

  • PDF

건물의 열성능 평가 지표에 관한 연구 (A Study of Thermal Performance Evaluation Index for Building)

  • 김미현;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.67-75
    • /
    • 2007
  • This study intends to the adequacy inspection of the room temperature variation rate that is available in the building heat performance evaluation index, so we performed the sensitivity analysis about the room temperature variation rate and the energy consumption in the room. For these purpose, we supposed the models which are composed of the various window area, insulation thickness and ventilation rate. Then we analyzed the simulation using the ESP-r and Seoul weather data. In this research, the pattern of the increasing & decreasing rate of annual load according to the change of the various design factors is similar to the pattern of increasing & decreasing rate of not the K-values but the room temperature variation rate. Also we derive the optimum value of the various design factors and the room temperature variation rate in this analysis model. Further study is to be required the development of convenient tool to use in the real design.

Challenges in Selecting an Appropriate Heat Stress Index to Protect Workers in Hot and Humid Underground Mines

  • Roghanchi, Pedram;Kocsis, Karoly C.
    • Safety and Health at Work
    • /
    • 제9권1호
    • /
    • pp.10-16
    • /
    • 2018
  • Background: A detailed evaluation of the underground mine climate requires extensive measurements to be performed coupled to climatic modeling work. This can be labor-intensive and time-consuming, and consequently impractical for daily work comfort assessments. Therefore, a simple indicator like a heat stress index is needed to enable a quick, valid, and acceptable evaluation of underground climatic conditions on a regular basis. This can be explained by the unending quest to develop a "universal index," which has led to the proliferation of many proposed heat stress indices. Methods: The aim of this research study is to discuss the challenges in identifying and selecting an appropriate heat stress index for thermal planning and management purposes in underground mines. A method is proposed coupled to a defined strategy for selecting and recommending heat stress indices to be used in underground metal mines in the United States and worldwide based on a thermal comfort model. Results: The performance of current heat stress indices used in underground mines varies based on the climatic conditions and the level of activities. Therefore, carefully selecting or establishing an appropriate heat stress index is of paramount importance to ensure the safety, health, and increasing productivity of the underground workers. Conclusion: This method presents an important tool to assess and select the most appropriate index for certain climatic conditions to protect the underground workers from heat-related illnesses. Although complex, the method presents results that are easy to interpret and understand than any of the currently available evaluation methods.

저온열원의 특성에 따른 ORC 성능해석 최적화 연구 (Optimization Study on the Performance Analysis of Organic Rankine Cycle for Characteristics of Low Temperature Heat Sources)

  • 엄홍선;윤천석;김영민;신동길;김창기
    • 설비공학논문집
    • /
    • 제24권1호
    • /
    • pp.51-60
    • /
    • 2012
  • Optimization procedures of performance analysis for ORC(Organic Rankine Cycle) system are established to the characteristics of low temperature heat sources such as open-type and closed-type. Effective heat recovery and heat extraction related to maximum power of the cycle as well as heat quality and thermal efficiency must be considered in the case of the open-type low temperature heat source. On the other hand, in the case of the closed-type low temperature heat source, only thermal efficiency is important due to constant heat input. In this study, thermal efficiency and exergy efficiency representing a level of close to Carnot cycle are studied, as useful index for the optimization of the ORC system. To validate the results of cycle analysis, those are compared with appropriate experimental data of ORC system as a thermal efficiency point of view.

강의실에서의 냉방부하에 따른 열쾌적성 평가지표 비교 - PMV와 EDT의 연관성 - (Comparison of Thermal Comfort Performance Indices for Cooling Loads in the Lecture Room - An Correlation of PMV Bnd EDT -)

  • 노광철;오명도
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.868-877
    • /
    • 2005
  • We performed the experimental and the numerical study on the comparison of thermal comfort performance indices for cooling loads in the lecture room for 4 cases: Fan coil unit(FCU) or 4-way cassette air-conditioner is respectively operated with the ventilation system or without. We measured the velocity, the temperature distribution and predicted mean vote(PMV) value in the lecture room for 4 different air-conditioning methods. Effective draft temperature(EDT) and PMV were investigated to analyze the characteristics of two thermal comfort indices in the lecture room and to compare their values each other. From the results we knew that there is the similarity between PMV values and EDTs when the room is air-conditioned for cooling loads. It turned out that definition of the control temperature is very important when the EDT is calculated. Finally EDT should not be used to predict the accurate thermal comfort in case that the temperature and humidity are suddenly varied and the zone affected by the solar and inner wall radiation.

소방보호복 소재의 공기간극이 열보호 성능에 미치는 영향 (Effect of Fire Fighters' Turnout Gear Materials Air Gap on Thermal Protective Performance)

  • 이준경;권정숙
    • 한국화재소방학회논문지
    • /
    • 제28권4호
    • /
    • pp.97-103
    • /
    • 2014
  • 소방보호복은 고열유속에 의한 화상방지를 위해 3층 이상의 복합소재로 구성되어 있으며, 각 소재 사이는 공기 간극이 존재한다. 화재에 의한 고열유속 노출 시 공기 간극 내에서의 열전달은 대류와 복사에 의해 주로 발생하며, 그로 인해 간극의 크기에 따라서 비선형 특징의 열 저항 크기를 갖게 된다. 그러므로 본 연구에서는 보호복 소재 사이의 여러 가지 공기 간극(0~7 mm)에 대한 보호복의 열 보호성능을 자세히 파악하기 위한 실험을 수행하였다. 복사 열 유속 입사시에 시간에 따른 각 소재의 온도 변화뿐만 아니라, 열 보호성능을 가장 효과적으로 나타낼 수 있는 지표(Radiant Protective Performance, RPP) 값의 공기간극에 대한 변화 특성을 파악하였다. 공기간극이 증가할수록 단열효과가 커짐으로 인해 후면의 온도는 낮아지고, RPP는 커짐을 확인할 수 있었다. 특히 일정 열유속 조건에서 공기간극에 대한 RPP 값은 선형적인 특성을 나타내었고, 그러한 결과를 바탕으로 다양한 입사 열유속 및 공기 간극 조건에 대해 비교적 간단한 형태의 RPP 지표 예측 식을 제안하였고, 좋은 예측 결과를 얻을 수 있었다.

Research on Thermal Refocusing System of High-resolution Space Camera

  • Li, Weiyan;Lv, Qunbo;Wang, Jianwei;Zhao, Na;Tan, Zheng;Pei, Linlin
    • Current Optics and Photonics
    • /
    • 제6권1호
    • /
    • pp.69-78
    • /
    • 2022
  • A high-resolution camera is a precise optical system. Its vibrations during transportation and launch, together with changes in temperature and gravity field in orbit, lead to different degrees of defocus of the camera. Thermal refocusing is one of the solutions to the problems related to in-orbit defocusing, but there are few relevant thermal refocusing mathematical models for systematic analysis and research. Therefore, to further research thermal refocusing systems by using the development of a high-resolution micro-nano satellite (CX6-02) super-resolution camera as an example, we established a thermal refocusing mathematical model based on the thermal elasticity theory on the basis of the secondary mirror position. The detailed design of the thermal refocusing system was carried out under the guidance of the mathematical model. Through optical-mechanical-thermal integration analysis and Zernike polynomial calculation, we found that the data error obtained was about 1%, and deformation in the secondary mirror surface conformed to the optical index, indicating the accuracy and reliability of the thermal refocusing mathematical model. In the final ground test, the thermal vacuum experimental verification data and in-orbit imaging results showed that the thermal refocusing system is consistent with the experimental data, and the performance is stable, which provides theoretical and technical support for the future development of a thermal refocusing space camera.