• 제목/요약/키워드: Thermal Modeling

검색결과 970건 처리시간 0.027초

위성 PCB 열해석을 위한 고 전력소산 소자의 모델링 연구 (A Study of High-Power Dissipation Parts Modeling for Spacecraft PCB Thermal Analysis)

  • 이미현;장영근;김동운
    • 한국항공우주학회지
    • /
    • 제34권6호
    • /
    • pp.42-50
    • /
    • 2006
  • 본 논문에서는 위성의 전장보드 열해석을 위한 최적의 열모델링 방법을 제안하였다. 플레이트 모델링 방법을 통한 보드 모델링에 고전력 소산 소자의 외부 및 내부 구조를 직접 모델링하는 방법을 새롭게 제안하였다. 이러한 모델링 방법을 다른 모델링과 비교 분석하여 효율성을 검토하였고 열진공 시험을 통해 검증하였다. 제시한 소자 모델링 방법으로 HAUSAT-2의 발열이 큰 통신보드의 열해석을 수행한 결과, 노드 네트워크 모델링 방법과 플레이트 모델링 방법의 단점을 모두 보완할 수 있었다. 또한, 소자 모델링 방법은 열적인 문제에 따른 소자 수준의 해결방안을 모색 후, 그에 따른 열해석을 수행하여 효과를 예측할 수 있으므로 열제어계 설계에도 효율적이다.

정지궤도위성 전장품의 열설계 검증을 위한 최적 열해석 모델링 연구 (A Study on Optimized Thermal Analysis Modeling for Thermal Design Verification of a Geostationary Satellite Electronic Equipment)

  • 전형열;양군호;김정훈
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.526-536
    • /
    • 2005
  • A heat dissipation modeling method of EEE parts, or semi-empirical heat dissipation method, is developed for thermal design and analysis an electronic equipment of geostationary satellite. The power consumption measurement value of each functional breadboard is used for the heat dissipation modeling method. For the purpose of conduction heat transfer modeling of EEE parts, surface heat model using very thin ignorable thermal plates is developed instead of conventional lumped capacity nodes. The thermal plates are projected to the printed circuit board and can be modeled and modified easily by numerically preprocessing programs according to design changes. These modeling methods are applied to the thermal design and analysis of CTU (Command and Telemetry Unit) and verified by thermal cycling and vacuum tests.

객체지향 물리적 모델링 기법을 활용한 BIM기반 통합 건물에너지 성능분석 모델 구축 및 활용을 위한 프레임워크 개발 - 건물 열부하 시뮬레이션 중심으로 - (A Framework Development for BIM-based Object-Oriented Physical Modeling for Building Thermal Simulation)

  • 정운성
    • KIEAE Journal
    • /
    • 제15권5호
    • /
    • pp.95-105
    • /
    • 2015
  • Purpose: This paper presents a framework development for BIM (Building Information Modeling)-based OOPM (Object-Oriented Physical Modeling) for Building Thermal Simulation. The framework facilitates decision-making in the design process by integrating two object-oriented modeling approaches (BIM and OOPM) and efficiently providing object-based thermal simulation results into the BIM environment. Method: The framework consists of a system interface between BIM and OOPM-based building energy modeling (BEM) and the visualization of simulation results for building designers. The interface enables a BIM models to be translated into OOPM-based BEM automatically and the thermal simulation from the created BEM model immediately. The visualization module enables the simulation results to be presented in BIM for building designers to comprehend the relationships between design decisions and the building performances. For the framework implementation, we utilized the Modelica Buildings Library developed by the Lawrence Berkeley National Laboratory as a thermal simulation solver. We also conducted an experiment to validate the framework simulation results and demonstrate our framework. Result: This paper demonstrates a new methodology to integrate BIM and OOPM-based BEM for building thermal simulation, which enables an automatic translation BIM into OOPM-based BEM with high efficiency and accuracy.

인공위성 영상기의 열모델링 방법 (THERMAL MODELING TECHNIQUE FOR A SATELLITE IMAGER)

  • 김정훈;전형열;유명종;김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.174-180
    • /
    • 2010
  • Conductive and radiative thermal model configurations of an imager of a geostationary satellite are presented. A two-plane method is introduced for three dimensional conductive coupling which is not able to be treated by thin shell plate thermal modeling technique. Especially the two-plane method is applied to massive matters and PIP(Payload Interface Plate) in the imager model. Some massive matters in the thermal model are modified by adequate correction factors or equivalent thickness in order to obtain the numerical results of thermal modeling to be consistent with the analytic model. More detailed nodal breakdown is specially employed to the object which has the rapid temperature gradient expected by a rule of thumb. This detailed thermal model of the imager is supposed to be used for detailed analyses and test predictions, and be correlated with the thermal vacuum test results before final in-flight predictions.

  • PDF

인공위성 전장품의 열설계 검증을 위한 해석 및 실험적 연구 (An Analysis and Experimental Study for Thermal Design Verification of Satellite Electronic Equipment)

  • 김정훈;전형열;양군호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.91-95
    • /
    • 2005
  • A heat dissipation modeling method of EEE parts is developed for thermal design and analysis of an satellite electronic equipment. The power consumption measurement value of each functional breadboard is used for the heat dissipation modeling method. For the purpose of conduction heat transfer modeling of EEE parts, surface heat model using very thin ignorable thermal plates is developed instead of conventional lumped capacity nodes. The thermal plates are projected to the printed circuit board and can be modeled and modified easily by numerically preprocessing programs according to design changes. These modeling methods are applied to the thermal design and analysis of CTU and verified by thermal cycling and vacuum tests.

  • PDF

CNC 공작기계 스핀들 유닛의 5자유도 열변형 오차측정 및 모델링 기술 (Thermal Error Measurement and Modeling Techniques for the 5 Degree of Freedom(DOF) Spindle Unit Drifts in CNC Machine Tools)

  • 박희재;이석원;권혁동
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1343-1351
    • /
    • 2000
  • Thermally induced errors have been significant factors affecting the machine tool accuracy. In this paper, the spindle thermal error has been focused, where the 5 degree of freedom thermal error components are considered. An effective measurement system has been devised for the 5 DOF thermal errors, consisting of gap sensors and thermocouples around the micro-computer interfaced environment. Several thermal error modeling techniques are also implemented for the thermal error prediction: multiple linear regression, neural network and system identification methods, etc. The performance of the thermal error modeling techniques is evaluated and compared, giving the system identification method as the optimum model having the least deviation. The developed system for the thermal error measurement and modeling was practically applied to a CNC machining center, and the spindle thermal errors were effectively compensated around the micro computer-machine tool interfaced networks. The machine tool accuracy was improved about 4-5 times typically.

Active NPC 인버터의 손실 분배 제어를 위한 뉴턴의 냉각법칙 기반의 간단한 열 모델링 기법 (Convenient Thermal Modeling for Loss Distribution method of 3-Level Active NPC Inverter using Newton's Law of cooling)

  • 현승욱;이정효;원충연
    • 조명전기설비학회논문지
    • /
    • 제29권9호
    • /
    • pp.71-80
    • /
    • 2015
  • This paper proposes a convenient thermal modeling method for loss distribution control method of 3-level Active NPC(Neutral Point Clamped) inverter. In the drawback of conventional 3-level NPC, the generated losses can occur unbalance in each switching device, as a result, thermal utilization of designed system has been decreased. In order to compensate unbalanced losses, Active NPC inverter performed loss balancing control with thermal modeling during operation of each switching device. Therefore, this paper deals with a convenient thermal modeling method based on newton's law of cooling rather than conventional thermal modeling method. Both simulation and experimental results based on 10kW 3-level Active NPC inverter confirm the validity of the analysis performed in the study.

반실험적 열소산 방법을 이용한 위성용 전장품 열해석 (A SATELLITE ELECTRONIC EQUIPMENT THERMAL ANALYSIS USING SEMI-EMPERICAL HEAT DISSIPATION METHOD)

  • 김정훈;전형열;양군호
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.32-39
    • /
    • 2006
  • A heat dissipation modeling method of EEE parts is developed for thermal design and analysis of an satellite electronic equipment. The power consumption measurement value of each functional breadboard is used for the heat dissipation modeling method. For the purpose of conduction heat transfer modeling of EEE parts, surface heat model using very thin ignorable thermal plates is considered instead of conventional lumped capacity nodes. These modeling methods are applied to the thermal design and analysis of CTU EM and EQM and verified by thermal cycling and vacuum tests.

자기정렬 구조를 갖는 VGA급 볼로미터의 성능 모델링 (The Performance Modeling of a VGA Bolometer with Self-Aligned Structure)

  • 박승만
    • 전기학회논문지P
    • /
    • 제59권4호
    • /
    • pp.450-455
    • /
    • 2010
  • The performance modeling of a $25{\mu}m$ pitch VGA ${\mu}$-bolometer with the self-aligned thermal resistor structure is carried out. The self-aligned thermal resistor can be utilized for the maximizing the thermal resistance and the fill factor of a bolometer, so the performance improvement can be expected. From the results of the performance modeling of the micro-bolometer with self-align thermal resistor for a $25{\mu}m$ pitch $640{\times}480$ microbolometer designed with $0.6{\mu}m$ minimum feature size, the drastic improvements of NETD from 38.7 mK to 19.1 mK, responsivity of 1.9 times are expected with a self aligned thermal resistor structure. The main reason for the performance improvements with a self-aligned thermal resistor structure comes from the increasement of the thermal resistance.

단상 LSPM의 열해석 모델링 및 특성 해석 (Thermal modeling and analysis of single phase LSPM)

  • 함상환
    • 전기학회논문지
    • /
    • 제64권3호
    • /
    • pp.411-416
    • /
    • 2015
  • This paper presents the thermal modeling and analysis of Line power Start Permanent magnet Motor (LSPM). Thermal analysis of electrical machines is important because temperatures that are consistently too high will reduce the life time of machines and may lead to serious failure. Coefficients of convection are calculated according to the types of operating conditions. And computational fluid dynamics (CFD) technique is performed in order to predict thermal characteristic. The results are compared to the test results.