• 제목/요약/키워드: Thermal Judder

검색결과 18건 처리시간 0.022초

FEM을 이용한 벤틸레이티드 디스크 브레이크 열응력 해석에 관한 연구 (A Study on Thermal Analysis in Ventilated Disk Brake by FEM)

  • 김성모
    • 한국생산제조학회지
    • /
    • 제18권5호
    • /
    • pp.544-549
    • /
    • 2009
  • Thermal brake judder caused by the high friction heat of the brake disk. Hot thermal judder makes serious problems such as to be unstability to drivers or to decrease braking force of automobile. Because thermal judder vibration makes high vibration occurrence and thermal deformation of brake disk. Therefore it Is necessary to reduce or eleminate thermal Judder phenomenon by understanding and investigation. This paper introduces the thermal deformation arising from friction heat generation in braking and proposes the FEM analysis to predict the distribution of temperature and thermal deformation. the results of the FEM analysis show the deformed shape and temperature distribution of the disk brake. The optimization is performed to minimize the thermal judder of ventilated disc brake that is induced by the thermal deformation of the disk brake.

  • PDF

친환경 차량의 제동 정숙성을 위한 브레이크 디스크의 열변형 강건성 향상에 관한 연구 (A Study on Improvement of the Thermal Deformation Robustness of Brake Disc for Braking Quietness of Eco-Friendly Vehicles)

  • 심재훈;황세라;전갑배;공창섭
    • 자동차안전학회지
    • /
    • 제16권3호
    • /
    • pp.32-37
    • /
    • 2024
  • Braking judder vibration caused by thermal deformation of disc has been a major problem in brake system for a long time and many researchers have analyzed its mechanisms and developed solutions. However, judder vibration still occurs due to harsher vehicle driving conditions like increased power of EV (Electric Vehicle) and various environmental characteristics. In particular, in the case of eco-friendly vehicles such as EV, it is predicted that judder vibration will become a bigger problem due to the quiet driving condition compared to ICE (Internal Combustion Engine) vehicles. In addition, existing studies on judder vibration have been focused on the capacity and thermal deformation of the braking friction surface. So, the influence analysis of thermal deformation on the non-friction surface of the brake disc is relatively insufficient. In this study, we attempt to secure braking characteristics that are insensitive to thermal deformation in terms of the non-friction surface of the disc, focusing on the coning characteristic that occurs during braking thermal deformation. For this purpose, various factors of the non-friction surface of the disc are analyzed using robust design. The design standard for the robustness of the brake disc against judder vibration is proposed through the research results.

벤틸레이티드 디스크 브레이크 로터의 최적설계 (Optimal Design of Ventilated Disc Brake Rotor)

  • 이수기;성부용;하성규
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.593-602
    • /
    • 2000
  • The shape optimization is performed to minimize the judder of ventilated disc brake rotor that is induced by the thermal deformation of the disc. A three-dimensional finite element is developed to analyze the coupled system of temperature and displacement field, and the thermal conductivity and mechanical stiffness matrices are simultaneously taken into account. To reduce computing time, an equivalent heat transfer rate is introduced approximating the heat transfer rate on the disc surface. A deformation factor is introduced to describe the thermal deformation causing the judder. The deformation factor is chosen as an objective function in the optimization process. Consequently an optimum design is then performed minimizing the deformation factor with the design variables of the shape of the disc. The optimum design procedure presented in this study is proven to be an effective method of minimizing the judder, and it reduces the thermal deformation by 23% of the initial geometry.

디스크 브레이크와 패드의 접촉을 고려한 벤틸레이티드 디스크 브레이크의 열적거동에 관한 연구 (Thermal Behavior of Ventilated Disc Brakes Considering Contact Between Disc and Pad)

  • 마정범;이봉구
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.259-265
    • /
    • 2014
  • When the brakes of a vehicle are applied, large amounts of heat are generated on the surfaces of the brake discs owing to friction between the discs and the brake pads. A high temperature gradient on the disc surfaces leads to thermal deformation and severe disc abrasion. Ultimately, the thermal deformation and disc wear give rise to a thermal judder phenomenon, which has a major effect on the stability of the vehicle. To investigate and propose a solution to these problems, thermoelastic instabilities under applied thermal and mechanical loads were analyzed using the commercial finite element package ANSYS by considering the contact surfaces between the discs and pads. Direct-contact three-dimensional finite elements between the discs and pads were applied to investigate the disc friction temperature, thermal deformation, and contact stress so that the thermal judder phenomenon on the surface of the disc could be predicted.

차량진동 및 Rotor 내구특성을 고려한 Brake System 의 최적설계 (Optimal Design of Brake System considering Vehicle Vibration and Durability of Rotor)

  • 김봉수;김희열;김강욱;손영균;이동근;박관흠
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.764-769
    • /
    • 2001
  • Brake-induced vibrations of a vehicle such as brake judder are determined by the excitation of brake torque variations and by their transfer to the driver's contact points via suspension, body and steering system. The formation of brake torque variation is mainly determined by static and dynamic disk thickness variations. The vibration transfer from the excitation by brake torque variation to the perception by the driver depends on the kinematic and dynamic behaviour of the components in the transfer path. Optimization of the judder performance can be achieved either by minimizing the excitation or by reduction of the judder sensitivity of the vehicle. In this paper, the optimization process of a front rotor is suggested to reduce brake judder considering the cooling performance of the rotor, the judder sensitivity of the vehicle and durability of the rotor.

  • PDF

유한 요소법을 이용한 자동차용 디스크 브레이크의 열간 저더 해석 (Analysis of Hot Judder of Disc Brakes for Automotives by Using Finite Element Method)

  • 정성필;박태원;정원선
    • 대한기계학회논문집A
    • /
    • 제35권4호
    • /
    • pp.425-431
    • /
    • 2011
  • 차량 제동시 디스크와 패드사이의 미끄럼 접촉에 의해 발생하는 마찰열은 재질의 열 탄성 변형을 일으키고, 이는 접촉면의 압력 분포에 영향을 끼친다. 이러한 열탄성 불안정성 (Thermo-Elastic Instability, TEI)은 디스크의 고유 진동모드와 결합되어 열섬 현상 및 열간 저더 진동을 발생시킨다. 본 연구에서는 상용 유한 요소 해석 프로그램인 SAMCEF 를 이용하여 자동차용 통풍식 디스크에 대한 3 차원 열간 저더 해석을 수행하였다. Staggered approach 에 의거한 중간 처리기를 이용하여 구조-동역학 해석 결과와 열 전달 해석 결과를 교환하였다. 디스크 표면에 열섬이 발생하는 것을 확인하였고, 이를 디스크 고유 진동 모드와 비교함으로써 모드 형상과 열섬 분포의 관계를 분석하였다.

디스크 브레이크에서 접촉 마찰 진동이 열섬에 미치는 영향 연구 (A Study of Frictional Contact Vibration Influence on Hot Spot in Automotive Disk Brake)

  • 조후준;김명구;조종두
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.154-161
    • /
    • 2007
  • Hot spot phenomenon that occurs, during judder vibration, is locally concentrated heat due to friction between brake disk and pad. It is important to understand the reason behind hot spot phenomenon, for reduction of judder vibration. In this experimental study, experiments were performed in accordance with rotation speed of brake disk, pressure of master cylinder and pad length for achieving different aspects of hot spot phenomenon. Temperature distribution of hot spot was obtained by using the infrared camera. As the hot spot occurred, vibration was measured and frequency analysis was performed. Finite element analysis of thermal deformation of disk was performed by using temperature distribution that was achieved by experimental results. And mode shapes of disk was analyzed by finite element analysis and compared with experimental results. It was observed that the excitation frequency band of frictional contact and frictional force mainly affects the hot spot phenomenon.

반 실린더형 홈을 가진 벤틸레이티드 디스크 브레이크에서의 국소열전달 측정 및 수치 해석 (Local Heat Transfer Measurement and Numerical Analysis in the Ventilated Disc Brake with Semi-Cylindrical Grooves)

  • 이대희;박성봉;임창율;김흥섭;이관수
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.587-593
    • /
    • 2006
  • A ventilated disc brake having semi-cylindrical grooves has been proposed to improve the thermal judder by way of heat transfer enhancement. The local heat transfer coefficients were measured in the flow passage of disc brake. These measured local heat transfer data were utilized to do the finite element numerical analysis which predicts the maximum temperatures on the disc brake. The results show that the maximum temperatures on the disc surface with semi-cylindrical grooves are approximately 35.2% lower than those without them.

나선형 홈을 가진 브레이크 유로 내에서의 국소 열전달 측정 및 열 유동 해석 (Measurement of Local Heat Transfer Coefficients and Numerical Analysis in the Flow Passage of Disc Brake with Spirally Grooved Surfaces)

  • 이대희;박성봉;임창율;김흥섭;이관수
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.104-111
    • /
    • 2006
  • A ventilated disc brake having spirally fluted surface has been proposed to improve the thermal judder by way of heat transfer enhancement. The local heat transfer coefficients were measured in the flow passage of disc brake. These measured local heat transfer data were utilized to do the finite element numerical analysis which predicts the maximum temperatures on the disc brake. The results show that the maximum temperatures on the disc surface with spirally fluted surface are approximately 26.6% lower than those without them.

모터싸이클 디스크 브레이크의 열 및 응력 해석을 통한 형상 설계 (A Study on Shape Design of Motorcycle Disk using Thermal and Stress Analysis)

  • 강석현;박시형;이성수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.363-368
    • /
    • 2001
  • Studies on brake system recently are focused on braking performance, especially the consideration on safety of braking system in an extreme situation and reduction of vibration and noise during braking operation. The thermal crack and Judder from the friction between brake disc and pad can bring the threaten of passengers' safety in the end. Braking force comes from the change of kinetic energy to friction energy. Since heat energy is developed from here, the analysis on thermal stress and thermal strain can be the good data when selecting the material of brake pad and designing heat radiation holes on the disc and it will also be the data when designing the thickness of the disc. This paper is intended to show a creative design method by suggesting the thermal analysis data through FEM study and using shape design parameters.

  • PDF