• Title/Summary/Keyword: Thermal Insulation Performance

Search Result 415, Processing Time 0.027 seconds

Condensation Prevention Performance Assessment Taking Into Account Thermal Insulation Performance Degradation Due to Aging for Apartment Housing

  • Choi, Doo-Sung;Lee, Myung-Eun
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.11-18
    • /
    • 2015
  • Purpose: The current study analyzed trends in thermal insulation performance with aging, and condensation characteristics caused by the former. Method: Thermal insulation and condensation prevention performance of an architecture were assessed using Temperature Difference Ration Inside, or TDRi. Subjects of this quantitative analysis in thermal insulation performance change due to aging included recently constructed apartments and aged apartments older than 40 years. Time series comparison and analysis were conducted to observed changes in the thermal insulation performance and condensation characteristics. Result: Analysis showed that wall insulation performance degraded with aging regardless of fortified insulating material usage or insulating material type, which caused increased danger of condensation. In addition, when fortified insulating material was installed on the connection between the walls, insulation performance degradation was lower compared to cases in which fortified materials were not used. In all cases from 1 to 10, the rate of thermal insulation performance degradation increased after 20 years of aging.

(A)Study on Apartment Insulation Status and Insulation reinforcement Application (공동주택의 단열현황 조사 및 단열보강 적용방안에 관한 연구)

  • Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.226-227
    • /
    • 2015
  • This research is to measure and analyze the thermal performance of the apartment structure and to evaluate and establish standards of thermal insulation defect in order to make the basic data necessary for determining the degree of the thermal performance degradation and for repairing and reinforcing the exterior wall of the existing apartment. The following conclusions could be derived thorough the investigation of outer wall temperature distribution and the insulation assesment experiments using a model of specimens for the apartment houses' outer walls. It was confirmed that for the thermal performance through the insulating material thicknesses 5cm, 8cm in walls, the thermal insulation thickened by 3cm, from 5cm to 8cm, but that the actual temperature difference reached only about 1 ~ 2℃. This implies that the thermal performance improvement using the thermal insulation in walls is not significant and that it is difficult to insulate the thermal bridge area.

  • PDF

Calculation of Adequate Remodeling Period for The Improvement of Thermal Insulation Performance of External Walls in Deteriorated Apartments

  • Choi, Doo-Sung;Lee, Myung-Eun
    • KIEAE Journal
    • /
    • v.17 no.2
    • /
    • pp.5-12
    • /
    • 2017
  • Purpose: Under the purpose of presenting the adequate remodeling period for the improvement of thermal insulation performance of external walls in deteriorated buildings, the change in external wall and residential environment problem(dew condensation) due to aged deterioration after the apartments were constructed in Korea were analyzed. Method: Temperature Difference Ratio Outside(TDRo) and Heat Flow Meter(HFM) were used as measurement methods to evaluate the thermal insulation performance of deteriorated buildings. For TDR evaluation, thermo-graphic camera was used to measure and analyze the surface temperature of external wall. Also, dew condensation evaluation was analyzed using the Temperature Difference Ratio Inside(TDRi). Result: As a result of analyzing thermal performance through TDRo, the first decline point of thermal insulation performance began after 14-16 years have passed since construction was completed, and after 20 years have passed the decline point of thermal insulation performance reappeared. As a result of analyzing U-value with HFM measurement method, the decline rate of external wall's thermal insulation performance is lower than 2% in average at around 5 years after completion, and 8.7% in average at 10-15 years, and over 10.2% in average at 20 years.

The Thermal Performance of Building Insulation Materials According to Long-Term Aging (건축용 단열재의 장기 경시변화에 따른 열성능 특성)

  • Choi, Bo-Hye;Kang, Jae-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.617-623
    • /
    • 2013
  • This study is to draw thermal property data during long-term aging, by testing the thermal conductivity of building insulation materials in Korea. The thermal resistance of extruded insulation within 3 days from manufacture performed well over the KS Standard. After 50 to 110 days, however, the thermal performance had deteriorated to the level of the KS standard. Eventually, after 4,000 days, the insulation performance had deteriorated to about 25.4~41.8% of the initial performance. Therefore, this research will be utilized as a reference for thermal properties during long-term aging, in order to improve standards and regulations related to building insulation materials.

Thermal Insulation Performance of Composite Waterproofing Method of Thermal Supplement Type (단열 보완형 복합방수공법의 단열성능에 관한 연구)

  • Choi, Sung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.59-66
    • /
    • 2014
  • Insulation of rooftop is one of the major performance to energy-saving construction. Further, waterproofing performance is also important. For such a reason, it is need to develop waterproofing method containing thermal insulation property. This study was wanted to evaluate thermal insulation performance about the composite waterproofing method of thermal supplement type that is developed recently. As a result of waterproofing performance test, every test item was showed over the performance standards of KS (Korean (Industrial) Standards). And the result of thermal insulation performance test, the highest temperature in the styrofoam box was $25.91^{\circ}C$, the bubble sheet box was $17.28^{\circ}C$, the insulation sheet box was $15.47^{\circ}C$ and the waterproofing sheet box of thermal supplement type was $24.11^{\circ}C$. In observations of thermal bridges of sheet's joint, thermal bridges was not identified at the sheet's joint. As a result, composite waterproofing method of thermal supplement type is interpreted to have thermal insulation performance.

Performance Requirement of Cast-in-place Concrete with Sandwich Insulation (타설형 콘크리트 중단열 벽체의 요구성능 분석)

  • Park, Jun-Ho;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.10-11
    • /
    • 2014
  • Energy load of building affected by insulation performance of building's exterior. and insulation system can be classify interior insulation, exterior insulation, sandwich insulation according to install place of insulation. but within interior insulation system, corner wall and the cross outer wall-slab insulation part may occur thermal bridges. And then, within exterior insulation system is more superior insulation performance than interior insulation, but it has difficult to apply, easily broken at high building because of strong wind load. And also difficult to maintenance exterior insulation system. So, in this study, to found requirement performance of cast-in-place sandwich insulation system that is superior insulation performance and easy construction and maintenance. requirement performance of cast-in-place sandwich insulation system is 1) To avoid thermal bridges in the insulation performance, 2) Both sides concrete wall can be composite action in the structural performance. Because of this study, can develops cast-in-place sandwich insulation system and this insulation system contribute to improve insulation performance of apartment-house and high building.

  • PDF

Energy Consumption Characteristics and Evaluation of Thermal Insulation Performance in Accordance with Built Year of Apartment Complex (공동주택의 준공연도에 따른 단열성능 평가 및 에너지소비 특성에 관한 연구)

  • Choi, Doo Sung;Lee, Myung Eun;Chun, Hung Chan
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.79-86
    • /
    • 2014
  • Studies have shown that the thermal performance of buildings changes depending on the year of construction completion. It leads to increased energy consumption of buildings and significant financial burden on users. Thus, this study has calculated the thermal insulation performance of 86 apartments quantitatively, using temperature difference ratio and sensible heat flux. Also, energy consumption characteristics depending on the year of construction completion and thermal insulation performance were analyzed by comparatively analyzing the results of insulation performance evaluation and heating costs. The analysis results are as follows. As for thermal insulation performance, it was around 70% lower in the apartments completed before 1985, compared to apartments completed after 2010. As for heating costs, the apartments with the highest heating cost incurred 1.5 higher heating cost than the apartment with the lowest heating cost. In terms of the insulation performance evaluation, the difference was 2.5-fold.

Studies on Insulation Effect Related with Thin-Plate Design Factors for Reflective Metal Insulation(RMI) of Nuclear Power Plant (금속단열재 박판의 설계인자별 단열성능 영향 연구)

  • Eo, Minhun;Lee, Sungmyung;Jang, Kyehwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.350-354
    • /
    • 2016
  • Although fibrous insulations are generally used with resistive insulation type, metallic insulation is proper matter to satisfy low head-loss and equipment life when considering the specific condition, especially for Nuclear power plant. Common insulation is resistance insulation with a low thermal conductivity. but RMI is made of sheet plate with low emissivity and closed air space. Thermal radiation is blocked by stainless steel with low emissivity. Thermal conductivity and thermal convection are blocked by closed air space. This study shows the changes and effects of the heat loss according to shape and method of stacking sheet plates inserted into the insulation and analyzed the most optimized way for thermal insulation performance. The result shows that using sheet plate structure through raised and protruding shape processing was the appropriate model to optimize thermal performance. Additionally, insulating performance of RMI improved by placing the sheet plate in a high temperature region intensively.

Study on Long-term Performance of Phenolic Foam Insulation through Accelerated Aging Test (가속화 시험을 통한 페놀폼 단열재의 장기성능 비교분석에 관한 연구)

  • Kim, Jin-Hee;Kim, Sang-Myung;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.11-23
    • /
    • 2020
  • The application of the high-performance insulation materials for buildings seems to be an essential measure for reducing energy use in buildings. Phenolic foam is a readily available insulation material with thermal conductivity of about 0.018 to 0.020 W/(mK). It has the advantage of higher thermal resistance and better fire resistance compared to other conventional building insulation materials. Insulation material used for building envelope is regarded as one of the decisive factors for building's energy load. Furthermore, the degradation of its thermal performance over time increasingly affects the building's energy use demand. Generally, the life span of conventionally built buildings is expected to be more than 50 years, so the long-term performance of insulation materials is critical. This paper aims to evaluate the long-term performance of phenolic form boards through an accelerated aging test. The tests were conducted according to BS EN 13166 and KS M ISO 11561. Based on the results of the accelerated aging test, the thermal performance variation of the material was analyzed, and then its aged value after 25 years was computed. Also, the characteristics of the phenolic foam board's long-term performance were also examined based on the standard testing methods adopted.

Evaluation of Building Envelope Performance of a Dry Exterior Insulation System Using Truss Insulation Frame (트러스 단열 프레임을 이용한 건식 외단열 시스템의 외피 종합 성능 평가)

  • Song, Jin-Hee;Lee, Dong-Yun;Shin, Dong-Il;Jun, Hyun-Do;Park, Cheol-Yong;Kim, Sang-Kyun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.153-164
    • /
    • 2019
  • The presence of thermal bridges in a building envelope cause additional heat loss which increases the heating energy. Given that a higher building insulation performance is required in these cases, the heat loss via thermal bridges is a high proportion of the total heat energy consumption of a building. For the dry exterior insulation system that uses mullions and transoms to fix insulation and exterior materials such as stone and metal sheet, the occurrence of thermal bridges at mullions and transoms is one of the main reasons for heat loss. In this study, a dry exterior insulation system using the truss insulation frame (TIF) was proposed as an alternative to metal mullions. To evaluate the building envelope performance, structural, air-leakage, water-leakage, fire-resistance, thermal, and condensation risk tests were conducted. In addition, the annual energy consumption associated with heating and cooling was calculated, including the linear thermal transmittance of the thermal bridges. As a result, the dry exterior insulation system using TIF achieved the allowable value for all tests. It was also determined that the annual heating load of a building was reduced by 36.7 % when the TIF dry exterior insulation system was used, relative to the dry exterior insulation system using steel pipes without additional insulations.