• 제목/요약/키워드: Thermal Insulation Curing

검색결과 26건 처리시간 0.023초

플라이애시-고로슬래그 기반 지오폴리머 세라믹스의 열적특성 (Thermal Property of Geopolymer Ceramics Based on Fly Ash-Blast Furnace Slag)

  • 김진호;남인탁;박현;김경남
    • 한국재료학회지
    • /
    • 제26권10호
    • /
    • pp.521-527
    • /
    • 2016
  • Geopolymers have many advantages over Portland cement, including energy efficiency, reduced greenhouse gas emissions, high strength at early age and improved thermal resistance. Alkali activated geopolymers made from waste materials such as fly ash or blast furnace slag are particularly advantageous because of their environmental sustainability and low cost. However, their durability and functionality remain subjects for further study. Geopolymer materials can be used in various applications such as fire and heat resistant fiber composites, sealants, concretes, ceramics, etc., depending on the chemical composition of the source materials and the activators. In this study, we investigated the thermal properties and microstructure of fly ash and blast furnace slag based geopolymers in order to develop eco-friendly construction materials with excellent energy efficiency, sound insulation properties and good heat resistance. With different curing times, specimens of various compositions were investigated in terms of compressive strength, X-ray diffraction, thermal property and microstructure. In addition, we investigated changes in X-ray diffraction and microstructure for geopolymers exposed to $1,000^{\circ}C$ heat.

단열성능 개선을 위한 진공유리가 부착된 BIPV Module 개발에 관한 연구 (A Study on the Development of BIPV Module Equipped with Vacuum Glass for Improved Thermal Performance)

  • 엄재용;이현수;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제34권2호
    • /
    • pp.44-52
    • /
    • 2014
  • The main purpose of this paper is to develop the new BIPV module equipped with vacuum glass. Beacuse BIPV module has a function of architectural materials, thermal and PV performance should be simultaneously evaluated. To improve the thermal performance of BIPV module, this study developed BIPV module equipped with a vacuum glass. Those BIPV module was tested with a variety of encapsulants. The results are as follows. When a vacuum glass is laminated with EVA or PVB, it was broken. The reason seems to be bending by unbalance of heat expansion with center and edge of vacuum glass. In case of lamination with resin, there is no breakage and no bending of vacuum glass. Because production was conducted in low pressure & low temperature conditions. And it was also found that vacuum glass does not interfere with the UV curing process.

고강도콘크리트 내화성능을 확보한 건식화 PFB 공법 개발에 관한 연구 (A Study on the Development of a Dry PFB Method with High Fire Resistance)

  • 김우재;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.49-52
    • /
    • 2008
  • The present study was to develop a dry PFB method similar to the existing gypsum board construction method in order to apply the existing wet PFB method that uses fire-resistant adhesive. It was found that the existing wet method can produce concrete compressive strength of 80MPa and fire resistance of 3 hours with 30mm PF boards. The goal of development in this study was fire resistance of 3 hours through dry construction of 15mm fire-resistant boards. 1. Improved PF board was prepared by adding inorganic fiber to existing board and using aggregate with grain size of 3mm or less. Molding was done at temperature higher than that for existing PF board molding. While wet curing is used for existing PF boards, this study used dry curing in order to enhance heat insulation performance. 2. According to the results of fire resistance test, when the dry PF method was applied, the temperature of the main reinforcing bar was 116℃ in 15mm, 103.8℃ in 20mm, and 94℃ in 25mm, and these results satisfied the current standards for fire resistance control presented by the Ministry of Land, Transport and Maritime Affairs. When a 3-hour fire resistance test was performed and the external properties of the specimen were examined, the outermost gypsum board hardly remained and internal PF board maintained its form without thermal strain.

  • PDF

Bonding of nano-modified concrete with steel under freezing temperatures using different protection methods

  • Yasien, A.M.;Bassuoni, M.T.
    • Computers and Concrete
    • /
    • 제26권3호
    • /
    • pp.257-273
    • /
    • 2020
  • Concrete bond strength with steel re-bars depends on multiple factors including concrete-steel interface and mechanical properties of concrete. However, the hydration development of cementitious paste, and in turn the mechanical properties of concrete, are negatively affected by cold weather. This study aimed at exploring the concrete-steel bonding behavior in concrete cast and cured under freezing temperatures. Three concrete mixtures were cast and cured at -10 and -20℃. The mixtures were protected using conventional insulation blankets and a hybrid system consisting of insulation blankets and phase change materials. The mixtures comprised General Use cement, fly ash (20%), nano-silica (6%) and calcium nitrate-nitrite as a cold weather admixture system. The mixtures were tested in terms of internal temperature, compressive, tensile strengths, and modulus of elasticity. In addition, the bond strength between concrete and steel re-bars were evaluated by a pull-out test, while the quality of the interface between concrete and steel was assessed by thermal and microscopy studies. In addition, the internal heat evolution and force-slip relationship were modeled based on energy conservation and stress-strain relationships, respectively using three-dimensional (3D) finite-element software. The results showed the reliability of the proposed models to accurately predict concrete heat evolution as well as bond strength relative to experimental data. The hybrid protection system and nano-modified concrete mixtures produced good quality concrete-steel interface with adequate bond strength, without need for heating operations before casting and during curing under freezing temperatures down to -20℃.

건식화 P0SCO E&C Fire Board 공법 개발에 관한 연구 (A Study on the Development of a Dry P0SCO E&C Fire Board Method with High Fire Resistance)

  • 김우재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.721-724
    • /
    • 2008
  • 국내 초고층 프로젝트의 증가에 따라 필연적으로 고강도 콘크리트의 사용이 증가되고 있다. 콘크리트의 강도가 증가됨에 따라 화재시 단면결손을 유발하는 폭렬의 경향성이 커지고, 콘크리트부재 내부의 온도를 현저하게 증가시키며 심각한 구조적 손상을 유발할 수 있다는 문제점이 대두되었고, 정부에서도 2008년 7월부터 고강도 콘크리트의 내화성능 관리기준을 시행하고 있다. 이에 국내 각 건설사들은 50MPa 이상의 고강도 콘크리트에 대하여 폭렬방지 대책을 수립 중에 있다. 본 연구소에서는 신축공사 및 리모델링공사에도 적용이 가능한 고강도 콘크리트 폭렬방지 공법인 PFB (Posco E&C Fire Board) 공법을 개발하여 지속적인 공법 개선에 노력하고 있다. 본 연구는 고강도 콘크리트 폭렬방지 대책으로 개발한 PFB 공법을 기존의 습식공법에서 현장적용성 및 경제성이 우수한 건식화 공법개발을 위한 기초 연구로 PF보드의 기초물성 평가, 3시간 내화시험 및 현장 적용위한 실시 상세 설계를 실시하여 당사 초고층 현장에 적용하기 위한 기본 자료로 활용 하고자 하였다.

  • PDF

고내열성 전기 절연용 Poly(ester-imide) 수지의 합성 및 물성 (Synthesis and Properties of Poly(ester-imide) Resin for High Temperature Resistant Electrical Insulation)

  • 허완수;이상원;김정열;박이순;김순학;허정림
    • 공업화학
    • /
    • 제10권5호
    • /
    • pp.767-771
    • /
    • 1999
  • 내열성 전기 절연 coating에 사용되는 기본 수지인 poly(ester-imide) (PEI)의 1단계 및 2단계 합성법을 비교하였으며 촉매의 영향도 조사하였다. Poly(ester-imide) 수지의 합성에 있어서 trimellitic anhydride(TMA)와 methylene dianiline(MDA)으로부터 imide 반복 단위를 구성하는 N,N'-(4,4'-diphenylmethane)bistrimellitimide(DID)를 먼저 합성하고 에스테르화 반응을 시키는 2단계법과 TMA, MDA, dimethyl terephthalate(DMT) 및 ethylene glycol(EG), 1,3,5-tris-(2-hydroxy ethyl)isocyanurate(THEIC)를 모두 m-cresol 용매에 넣고 반응시키는 1단계법이 동등한 PEI 수지를 생성함을 확인할 수 있었다. 합성된 poly(ester-imide) 수지 용액에 xylene, phenol-formaldehyde 수지인 P-5030K, TDI type blocked isocyanate인 TK-8 및 tetrapropyltitanate(TPT)를 첨가하여 경화 반응을 시키고 생성된 피막의 유연성 및 투명도를 조사한 결과 히드록실기의 함량, DMT의 첨가 및 imide 반복 단위의 함량이 내열성 절연 코팅의 물성에 중요한 인자로 작용함을 알 수 있었다.

  • PDF