• 제목/요약/키워드: Thermal Instability

Search Result 281, Processing Time 0.024 seconds

Estimation of Fluid-elastic Instability Characteristics on Group Plugged KSNP Steam Generator Tube (집단 관막음된 한국표준원전 증기발생기 전열관의 유체탄성불안정성 특성 평가)

  • 조봉호;유기완;박치용;박수기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.670-676
    • /
    • 2003
  • To investigate the group plugging effect the fluid-elastic instability analysis has been performed on various column and row number of the KSNP steam generator lutes. This study compares the stability ratio of the plugged tube with that of the intact one. The information on the thermal-hydraulic data of the steam generator have been obtained by using the ATHOS3-MOD1 code with and without the thermal energy transfer at the plugged region. Both of the boundary conditions of hot-leg temperature and feedwater mass flow rate are fixed for this investigation. From the results of this study the stability ratios inside the group plugging zone are decreased slightly. At the outside of group plugging zone, however, most of the stability ratios tend to be increased.

  • PDF

Combustion instabilities of the Premixed flame in Micro-Channel (미소채널 내에서의 예혼합화염의 연소불안정성)

  • Kang, Sang-Hun;Baek, Seung-Wook;Im, Hong-G.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.209-214
    • /
    • 2003
  • The Saffman-Taylor instability mechanisms in laminar premixed flames in a Hele-Shaw cell are investigated using two-dimensional numerical simulations with Poiseuille assumption for the viscous effect. The baseline calculations considering the Darrieus-Landau and diffusive-thermal instability modes show the results consistent with the classical linear instability theory. With the Saffrnan-Taylor instability mechanism. the overall effect is to enhance the destabilizing mechanism by providing an increased viscous force in the product gas. The linear instability behavior is found to qualitatively similar to the Darrieus-Landau mechanism. However, the results in the nonlinear range demonstrate that there may exist distinct characteristic time scales associated with Darrieus-Landau and Saffman-Taylor mechanisms, such that the latter effect sustains longer in time, contributing to a higher overall flame speed.

  • PDF

Experimental Study on Role of Syngas Addition on Flame Propagation and Stability in DME-Air Premixed Flames (디메틸에테르-공기 예혼합화염의 화염전파와 화염안정성에 있어서 합성가스의 첨가효과에 관한 실험적 연구)

  • Song, Wonsik;Park, Jeong;Gwon, O-Bung;Yun, Jin-Han;Gil, Sang-In;Kim, Tae-Hyeong;Kim, Yeong-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.207-209
    • /
    • 2012
  • The present experiment was conducted to measure the unstretched laminar burning velocity and cellular instability of DME-air and syngas (in steps of 25 %) added DME-air premixed flames using propagating spherical flame. The experimental results were discussed in two focuses which are effects of syngas fraction and initial pressure on Markstein length, unstretched laminar burning velocities, and cellular instability. The flame instability was evaluated by the Markstein length and cellularity which is caused by diffusional-thermal instability and hydrodynamic instability.

  • PDF

An Experimental on Cellular Instability and Laminar Burning Velocity of SNG Fuel (SNG 연료의 셀 불안정성 및 층류연소속도에 관한 실험적 연구)

  • Kim, Dongchan;Jo, Junik;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.109-112
    • /
    • 2015
  • This article describes a cellular instability and laminar burning velocity of simulated synthetic natural gas(SNG) including 3% hydrogen. In this study, experimental apparatus is employed using cylindrical bomb combustor, and investigation is carried out with high speed camera and Schlieren system. The cellular instability is caused by the buoyancy, hydrodynamic instability. Unstretched burning velocity can be determined by extrapolated stretch rate of zero point from measured results. These results were also compared with numerical calculation by Chemkin package with GRI 3.0, USC-II, WANG, C3 Fuel mechanism. As an experimental conditions, equivalence ratios was adjusted from 0.8 to 1.3. From results of this work, the one was found that the cellular instability has occurred by effect of thermal expansion rate and flame thickness. As the other results, unstretched laminar burning velocity was best coincided with GRI 3.0 mechanism.

  • PDF

Light intensity controlled wrinkling patterns in photo-thermal sensitive hydrogels

  • Toh, William;Ding, Zhiwei;Ng, Teng Yong;Liu, Zishun
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.315-327
    • /
    • 2016
  • Undergoing large volumetric changes upon incremental environmental stimulation, hydrogels are interesting materials which hold immense potentials for utilization in a wide array of applications in diverse industries. Owing to the large magnitudes of deformation it undergoes, swelling induced instability is a commonly observed sight in all types of gels. In this work, we investigate the instability of photo-thermal sensitive hydrogels, produced by impregnating light absorbing nano-particles into the polymer network of a temperature sensitive hydrogel, such as PNIPAM. Earlier works have shown that by using lights of different intensities, these hydrogels follow different swelling trends. We investigate the possibility of utilizing this fact for remote switching applications. The analysis is built on a thermodynamic framework of inhomogeneous large deformation of hydrogels and implemented via commercial finite element software, ABAQUS. Various examples of swelling induced instabilities, and its corresponding dependence on light intensity, will be investigated. We show that the instabilities that arise have their morphologies dependent on the light intensity.

Instability of Evaporation Fronts in the Interstellar Medium

  • Kim, Jeong-Gyu;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.46.2-46.2
    • /
    • 2013
  • The neutral component of the interstellar medium (ISM) is segregated into the cold neutral medium (CNM) and warm neutral medium (WNM) as a result of thermal instability. It was found that the CNM--WNM evaporation interface, across which the CNM undergoes thermal expansion, is linearly unstable to corrugational disturbances, in complete analogy with the Darrieus-Landau instability (DLI) in terrestrial flames. To explore dynamical consequences of the DLI in the ISM, we perform a linear stability analysis of the DLI including the effect of thermal conduction as well as nonlinear hydrodynamic simulations. We find that the DLI is suppressed at short length scales via heat transport. The linear growth time of the fastest growing mode is proportional to the square of the evaporation flow speed of the CNM relative to the interface and is typically >10 Myr. In the nonlinear stage, perturbations grow into cusp-like structure protruding toward the WNM, and soon reach a steady state where the evaporation rate is increased by a factor of 2 compared to the initial state. We demonstrate that the amplitude of the interface distortion and enhancement in evaporation rate are determined primarily by the density ratio between the CNM and WNM. Given quite a long growth time and highly subsonic velocities at saturation, the DLI is unlikely to play an important role in the ISM dynamics.

  • PDF

Coupled temperature-displacement modeling to study the thermo-elastic instability in disc brakes

  • Ramkumar, E.;Mayuram, M.M.
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.165-182
    • /
    • 2012
  • Macroscopic hot spots formed due to the large thermal gradients at the surface of the disc brake rotor, make the rotor to fail or wear out early. Thermo-elastic deformation results in contact concentration, leading to the non uniform distribution of temperature making the disc susceptible to hot spot formation. The formation of one hot spot event will predispose the system to future hot spotting at the same location. This leads to the complete thermo-elastic instability in the disc brakes; multitude parameters are responsible for the thermo elastic instability. The predominant factor is the sliding velocity and above a certain sliding velocity the instability of the brake system occurs and hot spots is formed in the surface of the disc brake. Commercial finite element package ABAQUS(R) is used to find the temperature distribution and the result is validated using Rowson's analytical model. A coupled analysis methodology is evolved for the automotive disc brake from the transient thermo-elastic contact analysis. Temperature variation is studied under different sliding speeds within the operation range.

Thermally Induced Vibration Control of Flexible Spacecraft Appendages Using by Piezoelectric Material (압전재료를 이용한 위성체 구조물의 열 진동 제어)

  • 윤일성;송오섭;김규선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.303-310
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that an bonded or embedded into the host structure.

  • PDF

Natural Convection of Nanofluids Using Jang and Choi's Model for Effective Thermal Conductivity and Various Models for Effective Viscosity (Jang and Choi's Model과 다양한 점성계수 모텔을 이용한 나노유체에서의 자연대류 특성)

  • Hwang, Kyo-Sik;Jang, Seok-Pil
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.539-545
    • /
    • 2005
  • In this paper, the thermal characteristics of natural convection in a rectangular cavity with nanofluids such as water-based nanofluids containing alumina are theoretically investigated with a new model of the thermal conductivity for nanofluids presented by Jang and Choi and various models for effective viscosity. In addition, based on theoretical results, the effects of various parameters such as the volume fraction, the temperature, and the size of nanoparticles on free convective instability and heat transfer characteristics in a rectangular cavity with nanofluids are suggested.

  • PDF

Oscillating Boundary Layer Flow and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소에서의 경계층 진동 변화와 저주파수 연소불안정)

  • Kim, Jina;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.720-727
    • /
    • 2019
  • Resonating thermal lags of solid fuel with heat transfer oscillations generated by boundary layer oscillation is the primary mechanism of the occurrence of the LFI (Low Frequency Combustion Instability) in hybrid rocket combustion. This study was experimentally attempted to confirm that how the boundary layer was perturbed and led to the LFI. Special attention was also made on oxidizer swirl injection to investigate the contribution to combustion stabilization. Also the overall behavior of fluctuating boundary layer flow and the occurrence of the LFI was monitored as swirl intensity increased. Fluctuating boundary layer was successfully monitored by the captured image and POD (Proper Orthogonal Decomposition) analysis. In the results, oscillating boundary layer became stabilized as the swirl intensity increases. And the coupling strength between high frequency p', q' diminished and periodical amplification of RI (Rayleigh Index) with similar frequency band of thermal lag was also decreased. Thus, results confirmed that oscillating axial boundary layer triggered by periodic coupling of high frequency p', q' is the primary mechanism to excite thermal resonance with thermal lag characteristics of solid fuel.