Browse > Article
http://dx.doi.org/10.12989/csm.2016.5.4.315

Light intensity controlled wrinkling patterns in photo-thermal sensitive hydrogels  

Toh, William (School of Mechanical and Aerospace Engineering, Nanyang Technological University)
Ding, Zhiwei (Institute of High Performance Computing)
Ng, Teng Yong (School of Mechanical and Aerospace Engineering, Nanyang Technological University)
Liu, Zishun (International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University)
Publication Information
Coupled systems mechanics / v.5, no.4, 2016 , pp. 315-327 More about this Journal
Abstract
Undergoing large volumetric changes upon incremental environmental stimulation, hydrogels are interesting materials which hold immense potentials for utilization in a wide array of applications in diverse industries. Owing to the large magnitudes of deformation it undergoes, swelling induced instability is a commonly observed sight in all types of gels. In this work, we investigate the instability of photo-thermal sensitive hydrogels, produced by impregnating light absorbing nano-particles into the polymer network of a temperature sensitive hydrogel, such as PNIPAM. Earlier works have shown that by using lights of different intensities, these hydrogels follow different swelling trends. We investigate the possibility of utilizing this fact for remote switching applications. The analysis is built on a thermodynamic framework of inhomogeneous large deformation of hydrogels and implemented via commercial finite element software, ABAQUS. Various examples of swelling induced instabilities, and its corresponding dependence on light intensity, will be investigated. We show that the instabilities that arise have their morphologies dependent on the light intensity.
Keywords
dual-sensitive; photo-thermal sensitive hydrogel; bifurcation; buckling; instability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang, X.X., Guo, T.F. and Zhang, Y.W. (2010), "Formation of gears through buckling multilayered filmhydrogel structures", Thin Sol. Film, 518(21), 6048-6051.   DOI
2 Barros, W., De Azevedo, E.N. and Engelsberg, M. (2012), "Surface pattern formation in a swelling gel", Soft Matt., 8(32), 8511-8516.   DOI
3 Bertoldi, K., Boyce, M.C., Deschanel, S., Prange, S.M. and Mullin, T. (2008), "Mechanics of deformationtriggered pattern transformations and superelastic behavior in periodic elastomeric structures", J. Mech. Phys. Sol., 56(8), 2642-2668.   DOI
4 Chen, C.M. and Yang, S. (2012), "Wrinkling instabilities in polymer films and their applications", Poly. Int., 61(7), 1041-1047.   DOI
5 Ding, Z., Liu, Z.S., Hu, J., Swaddiwudhipong, S. and Yang, Z. (2013), "Inhomogeneous large deformation study of temperature-sensitive hydrogel", Int. J. Sol. Struct., 50(16), 2610-2619.   DOI
6 DuPont Jr, S.J., Cates, R.S., Stroot, P.G. and Toomey, R. (2010), "Swelling-induced instabilities in microscale, surface-confined poly(N-isopropylacryamide) hydrogels", Soft Matt., 6(16), 3876-3882.   DOI
7 Guvendiren, M., Yang, S. and Burdick, J.A. (2009), "Swelling-induced surface patterns in hydrogels with gradient crosslinking density", Adv. Func. Mater., 19(19), 3038-3045.   DOI
8 Hong, W., Liu, Z.S. and Suo, Z. (2009), "Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load", Int. J. Sol. Struct., 46(17), 3282-3289.   DOI
9 Kang, D.H., Kim, S.M., Lee, B., Yoon, H. and Suh, K.Y. (2013), "Stimuli-responsive hydrogel patterns for smart microfluidics and microarrays", Anal., 138(21), 6230-6242.   DOI
10 Kang, M.K. and Huang, R. (2010), "A variational approach and finite element implementation for swelling of polymeric hydrogels under geometric constraints", J. Appl. Mech., 77(6), 61004-61012.   DOI
11 Lee, H., Zhang, J., Jiang, H. and Fang, N.X. (2012), "Prescribed pattern transformation in swelling gel tubes by elastic instability", Phys. Rev. Lett., 108(21), 214304-214304.   DOI
12 Liu, Z.S., Hong, W., Suo, Z., Swaddiwudhipong, S. and Zhang, Y. (2010), "Modeling and simulation of buckling of polymeric membrane thin film gel", Comput. Mater. Sci., 49(1), S60-S64.   DOI
13 Liu, Z.S., Swaddiwudhipong, S., Cui, F.S., Hong, W., Suo, Z. and Zhang, Y.W. (2011), "Analytical solutions of polymeric gel structures under buckling and wrinkle", Int. J. Appl. Mech., 3(2), 235-235.   DOI
14 Marcombe, R., Cai, S., Hong, W., Zhao, X., Lapusta, Y. and Suo, Z. (2010), "A theory of constrained swelling of a pH-sensitive hydrogel", Soft Matt., 6(4), 784-784.   DOI
15 Mora, T. and Boudaoud, A. (2006), "Buckling of swelling gels", Eur. Phys. J. E, Soft Matt., 20(2), 119-124.   DOI
16 Mullin, T., Deschanel, S., Bertoldi, K. and Boyce, M.C. (2007), "Pattern transformation triggered by deformation", Phys. Rev. Lett., 99(8), 084301.   DOI
17 Okumura, D., Inagaki, T. and Ohno, N. (2015), "Effect of prestrains on swelling-induced buckling patterns in gel films with a square lattice of holes", Int. J. Sol. Struct., 58, 288-300.   DOI
18 Okumura, D., Kuwayama, T. and Ohno, N. (2014), "Effect of geometrical imperfections on swellinginduced buckling patterns in gel films with a square lattice of holes", Int. J. Sol. Struct., 51(1), 154-163.   DOI
19 Sun, J.Y., Xia, S., Moon, M.W., Oh, K.H. and Kim, K.S. (2011), "Folding wrinkles of a thin stiff layer on a soft substrate", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science.
20 Sershen, S.R., Westcott, S.L., Halas, N.J. and West, J.L. (2000), "Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery", J. Biom. Mater. Res., 51(3), 293-298.   DOI
21 Suzuki, A. and Tanaka, T. (1990), "Phase transition in polymer gels induced by visible light", Nat., 346(6282), 345-347.   DOI
22 Toh, W., Ding, Z., Yong, N.T. and Liu, Z. (2015), "Wrinkling of a polymeric gel during transient swelling", J. Appl. Mech., 82(6), 061004-061004.   DOI
23 Toh, W., Ng, T.Y., Hu, J. and Liu, Z. (2014), "Mechanics of inhomogeneous large deformation of photothermal sensitive hydrogels", Int. J. Sol. Struct., 51(25), 4440-4451.   DOI
24 Trujillo, V., Kim, J. and Hayward, R.C. (2008), "Creasing instability of surface-attached hydrogels", Soft Matt., 4(3), 564-569.   DOI
25 Wu, G., Xia, Y. and Yang, S. (2014), "Buckling, symmetry breaking, and cavitation in periodically microstructured hydrogel membranes", Soft Matt., 10(9), 1392-1399.   DOI
26 Yang, S., Khare, K. and Lin, P.C. (2010), "Harnessing surface wrinkle patterns in soft matter", Adv. Func. Mater., 20(16), 2550-2564.   DOI
27 Yin, J., Bar-Kochba, E. and Chen, X. (2009), "Mechanical self-assembly fabrication of gears", Soft Matt., 5(18), 3469-3474.   DOI
28 Yoon, J., Bian, P., Kim, J., McCarthy, T.J. and Hayward, R.C. (2012), Local Switching of Chemical Patterns through Light-Triggered Unfolding of Creased Hydrogel Surfaces, Angewandte Chemie International Edition, 51, 7146-7149.   DOI