• 제목/요약/키워드: Thermal Imaging Technology

검색결과 172건 처리시간 0.025초

전산 열해석 및 적외선 열화상을 이용한 볼베어링의 동적 하중에 따른 진단 계측에 관한 연구 (On Diagnosis Measurement under Dynamic Loading of Ball Bearing using Numerical Thermal Analysis and Infrared Thermography)

  • 홍동표;김호종;김원태
    • 비파괴검사학회지
    • /
    • 제33권4호
    • /
    • pp.355-360
    • /
    • 2013
  • 본 연구에서는 적외선 열화상 카메라를 통하여 베어링의 온도변화를 분석하고, FEM 수치해석을 통하여 모델러에 대한 정상상태에서의 시뮬레이션을 통해 베어링의 열적분포를 해석하였다. 전산 열해석을 위한 유한요소 해석과 열화상 실험을 서로 비교분석하였고 유한요소 전산해석을 통하여 열화상 실험의 정확도를 확인하였다. 본 연구를 통하여 적외선 열화상 실험은 실시간으로 베어링의 상태를 감시할 수 있어 다른 진단방식보다 많은 장점을 가지고 있다. 또한 작업 현장에서 베어링 파손 상태 유무 확인과 파손 방지를 위해서 현장 작업조건을 적용한 유한요소 해석 결과를 비롯하여, 하중조건 회전속도조건, 볼 손상조건, 내외륜 손상조건 등에 따라, 열화상 카메라로 실시간으로 베어링을 감시하면 베어링의 파손을 진단 검출할 수 있다.

Investigation of an Infrared Temperature Measurement System for Thermal Safety Verification of Plasma Skin Treatment Devices

  • Choi, Jong-ryul;Kim, Wookeun;Kang, Bongkeun;Song, Tae-Ha;Baek, Hee Gyu;Han, Yeong Gil;Park, Jungmoon;Seo, Soowon
    • Current Optics and Photonics
    • /
    • 제1권5호
    • /
    • pp.500-504
    • /
    • 2017
  • In this paper, we developed a temperature measurement system based on an infrared temperature imaging module for thermal safety verification of a plasma skin treatment device (PSTD). We tested a pilot product of the low-temperature PSTD using the system, and the temperature increase of each plasma torch was well-monitored in real-time. Additionally, through the approximation of the temperature increase of the plasma torches, a certain limitation of the plasma treatment time on skin was established with the International Electrotechnical Commission (IEC) guideline. We determined an appropriate plasma treatment time ($T_{Safe}$ < 24 minutes) using the configured temperature measurement system. We believe that the temperature measurement system has a potential to be employed for testing thermal safety and suitability of various medical devices and industrial instruments.

Thermal Analysis of MIRIS Space Observation Camera for Verification of Passive Cooling

  • Lee, Duk-Hang;Han, Won-Yong;Moon, Bong-Kon;Park, Young-Sik;Jeong, Woong-Seob;Park, Kwi-Jong;Lee, Dae-Hee;Pyo, Jeong-Hyun;Kim, Il-Joong;Kim, Min-Gyu;Matsumoto, Toshio
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권3호
    • /
    • pp.305-313
    • /
    • 2012
  • We conducted thermal analyses and cooling tests of the space observation camera (SOC) of the multi-purpose infrared imaging system (MIRIS) to verify passive cooling. The thermal analyses were conducted with NX 7.0 TMG for two cases of attitude of the MIRIS: for the worst hot case and normal case. Through the thermal analyses of the flight model, it was found that even in the worst case the telescope could be cooled to less than $206^{\circ}K$. This is similar to the results of the passive cooling test (${\sim}200.2^{\circ}K$). For the normal attitude case of the analysis, on the other hand, the SOC telescope was cooled to about $160^{\circ}K$ in 10 days. Based on the results of these analyses and the test, it was determined that the telescope of the MIRIS SOC could be successfully cooled to below $200^{\circ}K$ with passive cooling. The SOC is, therefore, expected to have optimal performance under cooled conditions in orbit.

열화상 분석을 이용한 전력시스템의 안전진단에 관한 연구 (A Study on the Safety Diagnosis for Electric Power Systems Using Thermal Imaging Analysis)

  • 유병열;김찬오
    • 한국안전학회지
    • /
    • 제26권2호
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper, the safety diagnosis using thermal image analysis is described for power equipments. The conventional three-phase comparison method has only provided the results of thermal comparison for the equipments. The proposed method defines the conditions of poor connection by visual checks, and supports the criteria with each thermal rise step. As a result, the thermal difference from $5^{\circ}C$ to $10^{\circ}C$ meant the warning state. In addition, the thermal difference more than $10^{\circ}C$ meant that the connection status was unbalanced. In this case, the countermeasure might be the internal load distribution. If the thermal difference more than $20^{\circ}C$ is observed, it means a hot spot at the poor connection. If the hot spot is observed all over the surface, its cause was the unbalanced load, which made the conductive parts discolored and raised the possibility of oxidization or $Cu_2O$ generation. This diagnostic technology employing thermal image analysis method can be directly applied in the field and ensures the safety of equipments.

EUV pellicle의 standoff 거리에 따른 이미지 전사 특성 평가 (Evaluation on the Relationship between Mask Imaging Performance and Standoff Distance of EUV Pellicle)

  • 우동곤;홍성철;김정식;조한구;안진호
    • 반도체디스플레이기술학회지
    • /
    • 제15권1호
    • /
    • pp.22-26
    • /
    • 2016
  • Extreme ultraviolet (EUV) pellicle is one of the most concerned research in the field of EUV lithography (EUVL). Imaging performance of EUV mask with pellicle should be investigated prior to high volume manufacturing (HVM) of EUVL. In this paper, we analyzed the relationship between standoff distance and imaging performance of EUV mask to verify the influences of relative standoff distance on imaging performance. As a result, standoff distance of EUV pellicle has no effect on imaging performance of EUV mask such as critical dimension (CD), normalized image log slope (NILS) and image contrast. Therefore, pellicle support structure can be flexibly designed and modified in diverse ways to complement the thermal limitation of EUV pellicle membrane.

적외선 LED 램프를 이용한 적외선 체열 영상 진단 (The Method of medical Infrared Thermographic imaging using an Infrared LED Lamps)

  • 송민종;유성미;소병문;김진사;최운식;박춘배;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.282-282
    • /
    • 2010
  • LED Device was designed of electronic circuits of electrical power part for used Pspice student version and used Infrared LED lamps of load part. LED was used Computerized Electronic Medical Infrared Thermographic Imaging System for body surface Investigation of variable Body thermal asymmetry. It was knowledge body thermal Asymmetry of body surface and quantity body surface of electromagnetic wave to inflow electrical power part.

  • PDF

VISUALIZATION OF INTERNAL DEFECTS IN PLATE-TYPE NUCLEAR FUEL BY USING NONCONTACT OPTICAL INTERFEROMETRY

  • Park, Seung-Kyu;Park, Nak-Gyu;Baik, Sung-Hoon;Kang, Young-June
    • Nuclear Engineering and Technology
    • /
    • 제45권3호
    • /
    • pp.361-366
    • /
    • 2013
  • An imaging technique to visualize the internal defects in a plate-type nuclear fuel specimen was developed by using an active optical interferometer for a nondestructive quality inspection. A periodic thermal wave having a sinusoidal intensity pattern induced a periodical strain variation for the specimen. The varying strain image was acquired using an optical laser interferometer. The strain distribution over the internal defects will be distorted in an acquired strain image because a part of the thermal wave will be reflected from these defects during propagation. In this paper, internal defects were efficiently visualized by sequentially accumulating the extracted defect components. The experimental results confirmed that the developed visualization system can be a valuable tool to detect the internal defects in plate-type nuclear fuel.

예광제 조성이 연소 불꽃의 스펙트럼 및 광도에 미치는 영향 (Effect of Tracer Composition on Spectrum and Intensity of Burning Flame)

  • 권순길;황준식;이상무
    • 한국군사과학기술학회지
    • /
    • 제9권4호
    • /
    • pp.90-96
    • /
    • 2006
  • Computer simulation was carried out to develop the tracer composition of a high performance to be able to be observed by not only the naked eye but also the thermal imaging system attached to the weapon system. The results of computer simulation show that the optimum Mg content among the trace compositions is about 40% and the formulation consisted of Viton A has a higher flame temperature compared with that of chloride compound. But the only use of Viton A radiates a yellow light and the composition adding a chloride compound radiates the red light. The light intensity of the tracer composition involving Viton A is higher than that of chloride compound. The tracer composition involving Viton A shows more clear images in case of all tests.

Mock-up Test를 통한 AI 및 열화상 기반 콘크리트 균열 깊이 평가 기법의 적용성 검증 (Application Verification of AI&Thermal Imaging-Based Concrete Crack Depth Evaluation Technique through Mock-up Test)

  • 정상기;장아름;박진한;강창훈;주영규
    • 한국공간구조학회논문집
    • /
    • 제23권3호
    • /
    • pp.95-103
    • /
    • 2023
  • With the increasing number of aging buildings across Korea, emerging maintenance technologies have surged. One such technology is the non-contact detection of concrete cracks via thermal images. This study aims to develop a technique that can accurately predict the depth of a crack by analyzing the temperature difference between the crack part and the normal part in the thermal image of the concrete. The research obtained temperature data through thermal imaging experiments and constructed a big data set including outdoor variables such as air temperature, illumination, and humidity that can influence temperature differences. Based on the collected data, the team designed an algorithm for learning and predicting the crack depth using machine learning. Initially, standardized crack specimens were used in experiments, and the big data was updated by specimens similar to actual cracks. Finally, a crack depth prediction technology was implemented using five regression analysis algorithms for approximately 24,000 data points. To confirm the practicality of the development technique, crack simulators with various shapes were added to the study.

Simulation of a neutron imaging detector prototype based on SiPM array readout

  • Mengjiao Tang;Lianjun Zhang;Bin Tang;Gaokui He;Chang Huang;Jiangbin Zhao;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3133-3139
    • /
    • 2023
  • Neutron imaging technology as a means of non-destructive detection of materials is complementary to X-ray imaging. Silicon photomultiplier (SiPM), a new type of optical readout device, has overcome some shortcomings of traditional photomultiplier tube (PMT), such as high-power consumption, large volume, high price, uneven gain response, and inability to work in strong magnetic fields. Its application in the field of neutron detection will be an irresistible general trend. In this paper, a thermal neutron imaging detector based on 6LiF/ZnS scintillation screen and SiPM array readout was developed. The design of the detector geometry was optimized by geant4 Monte Carlo simulation software. The optimized detector was evaluated with a step wedge sample. The results show that the detector prototype with a 48 mm × 48 mm sensitive area can achieve about 38% detection efficiency and 0.26 mm position resolution when using a 300 ㎛ thick 6LiF/ZnS scintillation screen and a 2 mm thick Bk7 optical guide coupled with SiPM array, and has good neutron imaging capability. It provides effective data support for developing high-performance imaging detectors applied to the China Spallation Neutron Source (CSNS).