DOI QR코드

DOI QR Code

Simulation of a neutron imaging detector prototype based on SiPM array readout

  • Mengjiao Tang (Department of Nuclear Technology and Application, China Institute of Atomic Energy) ;
  • Lianjun Zhang (Department of Nuclear Technology and Application, China Institute of Atomic Energy) ;
  • Bin Tang (Spallation Neutron Source Science Center) ;
  • Gaokui He (Department of Nuclear Technology and Application, China Institute of Atomic Energy) ;
  • Chang Huang (Spallation Neutron Source Science Center) ;
  • Jiangbin Zhao (Department of Nuclear Technology and Application, China Institute of Atomic Energy) ;
  • Yang Liu (Department of Nuclear Technology and Application, China Institute of Atomic Energy)
  • Received : 2023.02.09
  • Accepted : 2023.05.03
  • Published : 2023.09.25

Abstract

Neutron imaging technology as a means of non-destructive detection of materials is complementary to X-ray imaging. Silicon photomultiplier (SiPM), a new type of optical readout device, has overcome some shortcomings of traditional photomultiplier tube (PMT), such as high-power consumption, large volume, high price, uneven gain response, and inability to work in strong magnetic fields. Its application in the field of neutron detection will be an irresistible general trend. In this paper, a thermal neutron imaging detector based on 6LiF/ZnS scintillation screen and SiPM array readout was developed. The design of the detector geometry was optimized by geant4 Monte Carlo simulation software. The optimized detector was evaluated with a step wedge sample. The results show that the detector prototype with a 48 mm × 48 mm sensitive area can achieve about 38% detection efficiency and 0.26 mm position resolution when using a 300 ㎛ thick 6LiF/ZnS scintillation screen and a 2 mm thick Bk7 optical guide coupled with SiPM array, and has good neutron imaging capability. It provides effective data support for developing high-performance imaging detectors applied to the China Spallation Neutron Source (CSNS).

Keywords

Acknowledgement

This work was supported by the Natural Science Foundation of China (Grant No. U2067207), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020B1515120025, 2022B1515120071).

References

  1. N. Kardjilov, I. Manke, R. Woracek, et al., Advances in neutron imaging[J], Mater. Today 21 (6) (2018) 652-672. https://doi.org/10.1016/j.mattod.2018.03.001
  2. Xingfen Jiang, Qinglei Xiu, Jianrong Zhou, et al., Study on the neutron imaging detector with high spatial resolution at China spallation neutron source[J], Nucl. Eng. Technol. 53 (6) (2021) 1942-1946. https://doi.org/10.1016/j.net.2020.12.009
  3. P. Trtik, J. Hovind, C. Grunzweig, et al., Improving the spatial resolution of neutron imaging at Paul Scherrer Institut e the neutron microscope project[J], Phys. Procedia 69 (2015) 169-176. https://doi.org/10.1016/j.phpro.2015.07.024
  4. P. Buzhan, B. Dolgoshein, A. Ilyin, et al., The advanced study of silicon photomultiplier[J], Advanced Technology and Particle Physics (2002) 717-728.
  5. M. Matsubayashi, A. Faenov, T. Pikuz, et al., LiF crystals as high spatial resolution neutron imaging detectors[J], Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 651 (1) (2011) 90-94. https://doi.org/10.1016/j.nima.2011.01.072
  6. S. Kumar, M. Herzkamp, D. Durini, et al., Development of a solid-state position sensitive neutron detector prototype based on 6 Li-glass scintillator and digital SiPM arrays[J], Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. (2020) 954.
  7. M.G. Strauss, R. Brenner, F.J. Lynch, et al., 2-D position-sensitive scintillation detector for neutrons[J], IEEE Trans. Nucl. Sci. 28 (1) (1981) 800-806. https://doi.org/10.1109/TNS.1981.4331282
  8. Anger Ho, Scintillation camera[J], Rev. Sci. Instrum. 29 (1) (1958) 27-33. https://doi.org/10.1063/1.1715998
  9. Carel W.E. van Eijk, Inorganic-scintillator development[J], Nucl. Instrum. Methods Phys. Res. A 460 (1) (2001) 1-14. https://doi.org/10.1016/S0168-9002(00)01088-3
  10. D. Daniel, D. Carsten, R. Heinz, et al., Evaluation of the dark signal performance of different SiPM-technologies under irradiation with cold neutrons[J], Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 835 (2016) 99-109. https://doi.org/10.1016/j.nima.2016.08.016
  11. C. Huang, B. Tang, Q. Yu, et al., Performance test of different silicon photomultipliers for the 6LiF:ZnS(Ag) based neutron detectors of CSNS[J], J. Instrum. (2022) 17.
  12. S. Agostinelli, J. Allison, K. Amako, et al., Geant4da simulation toolkit[J], Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506 (3) (2003) 250-303. https://doi.org/10.1016/S0168-9002(03)01368-8
  13. R. Brun, F. Rademakers, Root d an object oriented data analysis framework[J], Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 389 (1-2) (1997) 81-86. https://doi.org/10.1016/S0168-9002(97)00048-X
  14. A. Osovizky, K. Pritchard, J. Ziegler, et al., 6LiF:ZnS(Ag) mixture optimization for a highly efficient ultrathin cold neutron detector[J], IEEE Trans. Nucl. Sci. 65 (4) (2018) 1025-1032. https://doi.org/10.1109/TNS.2018.2809567
  15. Y. Yehuda-Zada, K.N. Pritchard, J.B. Ziegler, et al., Optimization of 6LiF:ZnS(Ag) scintillator light yield using GEANT4[J], Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 892 (2018) 59-69. https://doi.org/10.1016/j.nima.2018.02.099
  16. R. Zboray, R. Adams, M. Morgano, et al., Qualification and development of fast neutron imaging scintillator screens[J], Nucl. Instrum. Methods Phys. Res. 930 (2019) 142-150. https://doi.org/10.1016/j.nima.2019.03.078
  17. Jun-jie Tang, Tuo Wang, Qiang Zhang, Zhi-jia Sun, Chong Wu, Characteristics of 6LiF/ZnS(Ag) scintillator used in position-sensitive neutron detectors[J], Chin. J. Lumin. 34 (1) (2013) 78-81. https://doi.org/10.3788/fgxb20133401.0078
  18. Carel W.E. van Eijk, Inorganic-scintillator development[J], Nucl. Instrum. Methods Phys. Res. A 460 (1) (2001) 1-14. https://doi.org/10.1016/S0168-9002(00)01088-3
  19. Setsuo Satoh, Suguru Muto, et al., Development of two-dimensional position sensitive detector systems using multi-pixel photon counters for neutron experiments[J], Nucl. Instrum. Methods Phys. Res. 731 (2013) 255-259. https://doi.org/10.1016/j.nima.2013.04.067
  20. ASTM E545, Standard Test Method for Determining Image Quality in Direct Thermal Neutron Radiographic Examination[S], 2005.
  21. S.W. Morgan, J.C. King, C.L. Pope, Simulation of neutron radiograph images at the neutron radiography reactor[J], Ann. Nucl. Energy 57 (2013) 341-349. https://doi.org/10.1016/j.anucene.2013.02.010
  22. H. Jafari, M. Dastjerdi, S. Rajabi, A Monte Carlo evaluation of neutron images quality in a research reactor based neutron radiography facility[J], Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 976 (2020), 164258.