• Title/Summary/Keyword: Thermal Imaging

Search Result 623, Processing Time 0.026 seconds

Method for Measuring Weld Temperature Using an Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 용접부의 온도 측정 방법)

  • Ro, Chan-Seung;Kim, Kyeong-Suk;Chang, Ho-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.299-304
    • /
    • 2014
  • In this paper, a method is tested to measure temperatures in high-temperature welds. Protective glass was installed between an infrared thermal imaging camera and a heat source, and temperature compensation was applied to the measuring instruments. When the temperature of halogen lamps was taken in real-time and measured by the thermal camera, the temperature was found to be almost invariant with the distance between the camera and heat source. The temperature range could be predicted, through correlations with the thickness of the protective glass and the measured distance. This study suggests that the temperature measurement of welds obtained by using an infrared thermal imaging camera is valid, through experimental testing of heat sources.

Molding and Evaluation of Ultra-Precision Chalcogenide-Glass Lens for Thermal Imaging Camera Using Thermal Deformation Compensation (열변형 보정을 통한 열화상카메라용 초정밀 칼코지나이드 유리렌즈 몰드성형 및 특성 평가)

  • Cha, Du Hwan;Kim, Jeong-Ho;Kim, Hye-Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.91-96
    • /
    • 2014
  • Aspheric lenses used in the thermal imaging are typically fabricated using expensive single-crystal materials (Ge and ZnS, etc.) by the costly single point diamond turning (SPDT) process. As a potential solution to reduce cost, compression molding method using chalcogenide glass has been attracted to fabricate IR optic. Thermal deformation of a molded lens should be compensated to fabricate chalcogenide aspheric lens with form accuracy of the submicron-order. The thermal deformation phenomenon of molded lens was analyzed ant then compensation using mold iteration process is followed to fabricate the high accuracy optic. Consequently, it is obvious that compensation of thermal deformation is critical and useful enough to be adopted to fabricate the lens by molding method.

Personalized Cooling Management System with Thermal Imaging Camera (열화상 카메라를 적용한 개인 맞춤형 냉각관리 시스템)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.782-785
    • /
    • 2021
  • In this paper, we propose a personalized cooling management system with thermal imaging camera. The proposed equipment uses a thermal imaging camera to control the amount of cold air and the system according to the difference between the user's skin temperature before and after the procedure. When the skin temperature is abnormally low, the cold air supply is cut off to prevent the possibility of a safety accident. It is economical by replacing the skin temperature sensor with a thermal imaging camera temperature measurement, and it can be visualized because the temperature can be checked with the thermal image. In addition, the proposed equipment improves the sensitivity of the sensor that measures the distance to the skin by calculating the focal length by using a dual laser pointer for the safety of a personalized cooling management system to which a thermal imaging camera is applied. In order to evaluate the performance of the proposed equipment, it was tested in an externally accredited testing institute. The first measured temperature range was -100℃~-160℃, indicating a wider temperature range than -150~-160℃(cryo generation/USA), which is the highest level currently used in the field. In addition, the error was measured to be ±3.2%~±3.5%, which showed better results than ±5%(CRYOTOP/China), which is the highest level currently used in the field. The second measured distance accuracy was measured as below ±4.0%, which was superior to ±5%(CRYOTOP/China), which is the highest level currently used in the field. Third, the nitrogen consumption was confirmed to be less than 0.15 L/min at the maximum, which was superior to the highest level of 6 L/min(POLAR BEAR/USA) currently used in the field. Therefore, it was determined that the performance of the personalized cooling management system applied with the thermal imaging camera proposed in this paper was excellent.

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

A Basic Study to Reveal the Relationships between Solar Thermal Radiation and Thermographic Images (태양 복사와 열화상이미지의 관계에 대한 기초 연구)

  • Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.13-17
    • /
    • 2020
  • Among the factors that must be taken into account when using thermal imaging cameras that are expanding their application to various fields, a basic study was conducted focusing on temperature on the effect of solar radiation on the photographed thermal image. Through all experiments, in order to use an image taken with a thermal imaging camera for an object installed or located outdoors, a separate temperature correction according to the size of solar radiation or a separate device to block the effect of solar radiation must be additionally installed. Since the temperature of the same object may vary in the thermal image taken indoors or outdoors, it is necessary to calibrate it through comparison with other temperatures as a reference point. In the case of measuring the temperature of a glossy surface such as metal indoors with a thermal imaging camera, it was confirmed that an environment that can remove the light reflection effect by the glossy surface must be constructed and photographed.

Using a Thermal Imaging Camera to Locate Perforators on the Lower Limb

  • Paul, Sharad P.
    • Archives of Plastic Surgery
    • /
    • v.44 no.3
    • /
    • pp.243-247
    • /
    • 2017
  • Reconstruction of the lower limb presents a complex problem after skin cancer surgery, as proximity of skin and bone present vascular and technical challenges. Studies on vascular anatomy have confirmed that the vascular plane on the lower limb lies deep to the deep fascia. Yet, many flaps are routinely raised superficial to this plane and therefore flap failure rates in the lower limb are high. Fascio-cutaneous flaps based on perforators offer a better cosmetic alternative to skin grafts. In this paper, we detail use of a thermal imaging camera to identify perforator 'compartments' that can help in designing such flaps.

Design of Two Zoom Infrared Camels using Noise Uniformity Correction by Shutter Lens (셔터렌즈에 의한 검출기 불균일 보정을 적용한 이중배율 적외선 카메라 설계)

  • Ahn, Gyou-Bong;Kim, Seo-Hyun;Jung, Jae-Chul;Jo, Mun-Shin;Kim, Chang-Woo;Kim, Hyun-Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.135-141
    • /
    • 2007
  • This paper describes the design technology for a third generation thermal imaging system, which is more compact than before, using a $320\times240$ mid-IR focal plane detector. The third generation non-scanning thermal imaging system was constructed as a compact thermal imaging module as a reconnaissance, surveillance and navigation sensor for helicopter and infantry vehicles in the $1980's\sim1990's$ and now, we designed a new compact infrared camera and studied a new type of non-uniformity correction lens fer this camera.

Thermal Infrared Image Analysis for Breast Cancer Detection

  • Min, Sedong;Heo, Jiyoung;Kong, Youngsun;Nam, Yunyoung;Ley, Preap;Jung, Bong-Keun;Oh, Dongik;Shin, Wonhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1134-1147
    • /
    • 2017
  • With the rise in popularity of photographic and video cameras, an increasing number of fields are now using thermal imaging cameras. One such application is in the diagnosis of breast cancer, as thermal imaging provides a low-cost and noninvasive method. Thermal imaging is particularly safe for pregnant women, and those with large, dense, or sensitive breasts. In addition, excessive doses of radiation, which may be used in traditional methods of breast cancer detection, can increase the risk of cancer. This paper presents one method of breast cancer detection. Breast images were taken using a thermal camera, with preliminary experiments conducted on Cambodian women. Then the experimental results were analyzed and compared using Shannon entropy and logistic regression.

Non-Invasive in vivo Loss Tangent Imaging: Thermal Sensitivity Estimation at the Larmor Frequency

  • Choi, Narae;Kim, Min-Oh;Shin, Jaewook;Lee, Joonsung;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.36-43
    • /
    • 2016
  • Visualization of the tissue loss tangent property can provide distinct contrast and offer new information related to tissue electrical properties. A method for non-invasive imaging of the electrical loss tangent of tissue using magnetic resonance imaging (MRI) was demonstrated, and the effect of loss tangent was observed through simulations assuming a hyperthermia procedure. For measurement of tissue loss tangent, radiofrequency field maps ($B_1{^+}$ complex map) were acquired using a double-angle actual flip angle imaging MRI sequence. The conductivity and permittivity were estimated from the complex valued $B_1{^+}$ map using Helmholtz equations. Phantom and ex-vivo experiments were then performed. Electromagnetic simulations of hyperthermia were carried out for observation of temperature elevation with respect to loss tangent. Non-invasive imaging of tissue loss tangent via complex valued $B_1{^+}$ mapping using MRI was successfully conducted. Simulation results indicated that loss tangent is a dominant factor in temperature elevation in the high frequency range during hyperthermia. Knowledge of the tissue loss tangent value can be a useful marker for thermotherapy applications.

Analysis The Intensity of Weathering of The Rock Surface Using 3D Terrestrial Laser Scanner and Thermal Infrared Instrument (열적외선 기기와 3차원 레이저 스캐너를 이용한 암석 표면의 풍화강도 분석)

  • Lee, Soo-Gon;Cho, Hang-Kyo;Xu, Jing
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1324-1333
    • /
    • 2010
  • This paper is used in a recent civil engineering field in three-dimensional laser-meter tiles using thermal imaging cameras for the weathered rock slopes precisely measured indirectly, to the degree that began in the will. In the field is difficult to access the degree of weathering of the rock slope to the existing direct way to compensate for the shortcomings of 3D Terrestrial Laser Scanner and weathering characteristics of rocks using thermal imaging cameras to get the information to analyze the degree of rock weathering is. Intensity of 3D TLS and the thermal camera with image analysis to analyze the degree of weathering of bedrock in the field of core drilling targeting indoor laboratory tests were analyzed through the study. Granite, gneiss, sandstone, much of the cancerous samples, each experiment has a 40 per category, each of which 30 were used to analyze the data collected. That degree of rock weathering, the rock, depending on the strength of the Intensity values can change, depending on the level of thermal imaging camera, also weathered the changes in temperature could see. Intensity is the strength of weak rocks, the more value decrease, the temperature of the thermal imaging camera through the swell Intensity and notice that the temperature had an inverse relationship. Intensity value of the low strength of weak rock, but the value came out of the rocks have been proved to be largely dependent on the contrast. The contrast of the surface rocks are weathered dark Intensity values lower temperature to swell the contrary, the degree of weathering can be distinguished.

  • PDF