• 제목/요약/키워드: Thermal Fatigue

검색결과 573건 처리시간 0.029초

고온생성 산화막의 열피로에 의한 변형 (Deformation of Thermally Grown Oxide Due to Thermal Cycling)

  • 이상신;선신규;강기주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.415-419
    • /
    • 2004
  • Thermal barrier systems are susceptible to instability of the thermally grown oxide(TGO) at the interface between the bond coat(BC) and the thermal barrier coating(TBC). The instabilities have been linked to thermal cycling and initial geometrical imperfections, as well as to misfit strains due to oxide growth and expansion misfit. In this work, deformation of TGO near a surface groove due to thermal cycling has been observed at high temperatures, $1100^{circ}C$, $1150^{circ}C$, $1200^{circ}C$. The effect of peak temperature and the thickness of substrate are presented.

  • PDF

원자로 비상 냉각재 누설에 의한 열성층의 비정상 특성에 관한 연구 (Study of Thermal Stratification into Leaking Flow in the Nuclear Power Plant, Emergency Core Coolant System)

  • 한성민;최영돈;박민수
    • 설비공학논문집
    • /
    • 제18권3호
    • /
    • pp.202-210
    • /
    • 2006
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can be occurred due to coolant leaking in the check valve. The thermal stratification produces excessive thormal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, when the turbulence penetration occurs in the branch pipe, the maximum temperature differences of fluid at the pipe cross-sections of the T-branch with thermal stratification are examine.

구리박막의 피로특성에 관한 제조공정의 영향 (Manufacturing Process Effect on Fatigue Properties for Copper Thin Film)

  • 안중혁;박준협;김윤재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1783-1786
    • /
    • 2007
  • The copper film coated by Sn is often used in various applications such as LCD, Mobile Phone and etc. Especially, when the film is used as tape carrier package(TCP) of LCD panel, the film is repeatedly applied by mechanical or(and) thermal stress and then is often failed. Therefore, to guarantee the reliability of the electrical devices using the film, the tensile and fatigue characteristics of the film are important. In this study, to obtain the tensile and fatigue characteristics of the film, the specimen was fabricated by etching process to make a smooth specimen of 2000 ${\mu}m$ width, 8000 ${\mu}m$ length and 15.26 ${\mu}m$ thickness. The 2 kinds of specimen were fabricated by other manufacturing process. These specimens had values of Young's modulus(80.2GPa) lower than literature values(108${\sim}$145GPa) for bulk values, but had high values of the yield and ultimate strength as 317MPa and 437MPa, respectively. And fatigue test of load-control with 20Hz frequency was performed.

  • PDF

KDX-II급 함정 수직발사대 선체 균열발생에 따른 보강방안 연구 (A Study on the Retrofit measures for KDX-II KVLS Hull Crack)

  • 최상민;최준호
    • 품질경영학회지
    • /
    • 제45권3호
    • /
    • pp.393-401
    • /
    • 2017
  • Purpose: The purpose of this study is to propose retrofit measures for KDX-II KVLS hull crack, also, enhance safety and quality of ship. Also, this study suggest to how to retrofit about hull crack of the ship and how to improve operability of the ship. Methods: Retrofit measures of KDX-II KVLS hull crack reach a conclusion through global structure analysis and fatigue analysis. Concerned about thermal deformation due to welding around the KVLS, in addition to, verify to safety of KVLS. Results: Based on result of global structure analysis establish retrofit measures for KDX-II KVLS hull crack. Additionally, through fatigue analysis establish final retrofit measures. The results of retrofit measures are allowed both stress level and fatigue life. Conclusion: Retrofit measures for ship hull crack based on global structure analysis and fatigue analysis improves operability and quality of the ship. Especially, KDX-II ship is the best battleship in our country. Considering the importance of KDX-II, this study improves both Korea navy's combat power and ability to carry out the mission.

모서리균열이 있는 알루미늄판의 복합재 패치보수시 수명예측 연구 (Fatigue Life Prediction of Composite Patch for Edge Cracked Aluminum Plate)

  • 김위대
    • 한국항공우주학회지
    • /
    • 제35권1호
    • /
    • pp.52-57
    • /
    • 2007
  • 노후항공기의 균열보수 방법 중 복합재를 이용한 균열보수 방법을 이용하여 항공기 알루미늄 재료의 피로수명 예측을 위해 유한요소해석을 이용 하였다. 패치보수의 해석 시에는 접착제 층이 매우 얇기 때문에 모델링의 어려움이 있는데, 본 연구에서는 3층 기법을 이용하여 해석을 수행하였다. 피로수명의 예측 시에는 Paris의 법칙을 적용하였고, 효율적 수명예측을 위해 수정된 균열닫힘법을 적용하였다. 해석에 의한 수명예측 결과는 실험치를 잘 모사할 수 있었으며, 항공기의 피로수명 예측이나 수명연장기법으로 활용될 수 있을 것으로 생각된다.

경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가 (Evaluation of Thermal Durability for Thermal Barrier Coatings with Gradient Coating Thickness)

  • 이승수;김준성;정연길
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.248-255
    • /
    • 2020
  • 경사화 두께를 갖는 열차폐 코팅의 열적 내구성과 열적 안정성에 대한 코팅층 두께의 영향을 화염 열피로 시험과 열충격 시험을 통해서 조사하였다. Bond 층과 top 층은 각각 Ni-Cr계 상용 MCrAlY 분말과 상용 이트리아 안정화 지르코니아 (YSZ) 분말을 사용하여 니켈기지의 초내열합금 모재 (GTD-111)에 대기 플라즈마 용사법 (APS)으로 코팅층을 형성하였다. 1100 ℃의 화염으로 1429회 열피로 시험 후 bond 층이 일부 산화되고 top 층과 bond 층 계면에서 열화에 의한 산화층 (TGO)이 관찰되었으나, 코팅층 부위와 관계없이 균열이나 박리현상 없는 양호한 미세구조를 나타내었다. 1100 ℃ 열충격 시험결과, 37회 열충격 테스트 후 코팅층의 얇은 부위에서 박리가 시작되어 98회 시험 후 코팅층의 50% 이상이 박리되었으며, 코팅층의 두께가 얇게 형성된 부위는 코팅층이 두껍게 형성된 부위에 비해, top 층의 박리와 함께 bond 층의 산화가 많이 진행되었으며, 코팅층 두께가 상대적으로 두껍게 형성된 부위에서 열차폐 효과의 증가로 인해 bond 층의 내산화성과 열적 안정성이 우수한 것으로 나타났다.

고온 수직형 압력용기 Skirt 부의 열응력에 관한 연구 (Thermal Stress at the Junction of Skirt to Head in Hot Pressure Vessel)

  • 한명수;한종만;조용관
    • Journal of Welding and Joining
    • /
    • 제16권2호
    • /
    • pp.111-121
    • /
    • 1998
  • It is well recognized that a excessive temperature gradient from the junction of head to skirt in axial direction in a hot pressure vessel can cause unpredicted high thermal stress at the junction and/or in axial direction of a skirt. this thermal stress resulting from axial thermal gradient may be a major cause of unsoundness of structural integrity. In case of cyclic operation of hot pressure vessels, the thermal stress becomes one of the primary design consideration because of the possibility of fracture as a result of cyclic thermal fatigue and progressively incremental plastic deformation. To perform thermal stress analysis of the junction and cylindrical skirt of a vessel, or, at least, to inspect quantitatively the magnitude and effect of thermal stress, the temperature profile of the vessel and skirt must be known. This paper demonstrated the temperature distribution and thermal stress analysis for the junction of skirt to head using F.E. analysis. Effect of air pocket in crotch space was quantitatively investigated to minimize the temperature gradient causing the thermal stress in axial direction. Effect of the skirt height on thermal stresses was also studied. Analysis results were compared with theoretical formulas to verify th applicability to the strength calculation in design field.

  • PDF

Analysis of the fluid-solid-thermal coupling of a pressurizer surge line under ocean conditions

  • Yu, Hang;Zhao, Xinwen;Fu, Shengwei;Zhu, Kang
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3732-3744
    • /
    • 2022
  • To investigate the effects of ocean conditions on the thermal stress and deformation caused by thermal stratification of a pressurizer surge line in a floating nuclear power plant (FNPP), the finite element simulation platform ANSYS Workbench is utilized to conduct the fluid-solid-thermal coupling transient analysis of the surge line under normal "wave-out" condition (no motion) and under ocean conditions (rolling and pitching), generating the transient response characteristics of temperature distribution, thermal stress and thermal deformation inside the surge line. By comparing the calculated results for the three motion conditions, it is found that ocean conditions can significantly improve the thermal stratification phenomenon within the surge line, but may also result in periodic oscillations in the temperature, thermal stress, and thermal deformation of the surge line. Parts of the surge line that are more susceptible to thermal fatigue damage or failure are determined. According to calculation results, the improvements are recommended for pipeline structure to reduce the effects of thermal oscillation caused by ocean conditions. The analysis method used in this study is beneficial for designing and optimizing the pipeline structure of a floating nuclear power plant, as well as for increasing its safety.

Sn-Ag-Cu-X 무연솔더로 솔더링 된 접합부의 진동파괴 거동 (Behavior of Vibration Fracture for Sn-Ag-Cu-X Solders by Soldering)

  • 진상훈;강남현;조경목;이창우;홍원식
    • Journal of Welding and Joining
    • /
    • 제30권2호
    • /
    • pp.65-69
    • /
    • 2012
  • Environmental and health concerns over the lead have led to investigation of the alternative Pb-free solders to replace commonly used Pb-Sn solders in microelectronic packaging application. The leading candidates for lead-free solder alloys are presently the near eutectic Sn-Ag-Cu alloys. Therefore, extensive studies on reliability related with the composition have been reported. However, the insufficient drop property of the near eutectic Sn-Ag-Cu alloys has demanded solder compositions of low Ag content. In addition, the solder interconnections in automobile applications like a smart box require significantly improved vibration resistance. Therefore, this study investigated the effect of alloying elements (Ag, Bi, In) on the vibration fatigue strength. The vibration fatigue was conducted in 10~1000Hz frequency and 20Grms. The interface of the as-soldered cross section close to the Cu pad indicated the intermetallic compound ($Cu_6Sn_5$) regardless of solder composition. The type and thickness of IMC was not significantly changed after the vibration test. It indicates that no thermal activities occurred significantly during vibration. Furthermore, as a function of alloying composition, the vibration crack path was investigated with a focus on the IMCs. Vibration crack was initiated from the fillet surface of the heel for QFP parts and from the plating layer of chip parts. Regardless of the solder composition, the crack during a vibration test was propagated as same as that during a thermal fatigue test.

소듐 시험루프 내 고온 압력용기의 크리프-피로 건전성 평가 (Evaluation of Creep-Fatigue Integrity for High Temperature Pressure Vessel in a Sodium Test Loop)

  • 이형연;이동원
    • 대한기계학회논문집A
    • /
    • 제38권8호
    • /
    • pp.831-836
    • /
    • 2014
  • 본 연구에서는 한국원자력연구원 내에 설치될 예정인 소듐시험 시설인 SELFA(Sodium Thermal-hydraulic Experiment Loop for Finned-tube Sodium-to-Air heat exchanger) 내에서 정상상태 가동온도가 $510^{\circ}C$의 고온 압력용기인 팽창탱크에 대해 고온 건전성 평가를 수행하였다. 팽창탱크에 대해 3 차원 유한요소해석에 기초하여 고온설계 기술기준인 ASME Section III Subsection NH 와 프랑스의 RCC-MRx 코드를 따라 크리프-피로 손상평가를 수행하였다. 평가결과 팽창탱크는 크리프-피로 설계 과도 하중 하에서 구조적 건전성을 유지하는 것으로 나타났다. 316L 스테인리스강 재질의 동 압력용기에 대해 정량적 코드 비교 분석을 수행하였다.