DOI QR코드

DOI QR Code

Analysis of the fluid-solid-thermal coupling of a pressurizer surge line under ocean conditions

  • Received : 2022.02.04
  • Accepted : 2022.05.22
  • Published : 2022.10.25

Abstract

To investigate the effects of ocean conditions on the thermal stress and deformation caused by thermal stratification of a pressurizer surge line in a floating nuclear power plant (FNPP), the finite element simulation platform ANSYS Workbench is utilized to conduct the fluid-solid-thermal coupling transient analysis of the surge line under normal "wave-out" condition (no motion) and under ocean conditions (rolling and pitching), generating the transient response characteristics of temperature distribution, thermal stress and thermal deformation inside the surge line. By comparing the calculated results for the three motion conditions, it is found that ocean conditions can significantly improve the thermal stratification phenomenon within the surge line, but may also result in periodic oscillations in the temperature, thermal stress, and thermal deformation of the surge line. Parts of the surge line that are more susceptible to thermal fatigue damage or failure are determined. According to calculation results, the improvements are recommended for pipeline structure to reduce the effects of thermal oscillation caused by ocean conditions. The analysis method used in this study is beneficial for designing and optimizing the pipeline structure of a floating nuclear power plant, as well as for increasing its safety.

Keywords

References

  1. H.D. Kweon, J.S. Kim, K.Y. Lee, Fatigue design of nuclear class 1 piping considering thermal stratification, Nucl. Eng. Des. 238 (2008) 1265-1274. https://doi.org/10.1016/j.nucengdes.2007.11.009
  2. B. Yan, L. Yu, Theoretical research for natural circulation operational characteristic of ship nuclear machinery under ocean conditions, Ann. Nucl. Energy 36 (2009b) 733-741. https://doi.org/10.1016/j.anucene.2009.02.005
  3. B. Yan, L. yu, Y. Li, Research on operational characteristics of passive residual heat removal system under rolling motion, Nucl. Eng. Des. 239 (2009a) 2302-2310. https://doi.org/10.1016/j.nucengdes.2009.06.026
  4. S. Qiao, H. Gu, H. Wang, et al., Experimental investigation of thermal stratification in a pressurizer surge line, Ann. Nucl. Energy 73 (2014) 211-217. https://doi.org/10.1016/j.anucene.2014.06.045
  5. B. Cai, H. Gu, W. Yu, et al., Numerical investigation on the thermal stratification in a pressurizer surge line, Ann. Nucl. Energy 101 (2017a) 293-300. https://doi.org/10.1016/j.anucene.2016.11.024
  6. B. Cai, W. Yu, Y. Wang, et al., Experimental investigation on thermal stratification in a pressurizer surge line with different arrangements, Prog. Nucl. Energy 98 (2017b) 239-247. https://doi.org/10.1016/j.pnucene.2017.03.029
  7. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (8) (1994) 1598-1605. https://doi.org/10.2514/3.12149
  8. J.C. Jo, D.G. Kang, CFD Analysis of thermally stratified flow and conjugate heat transfer in a PWR pressurizer surge line, J. Pressure Vessel Technol. (2010), 021301.
  9. A. Rasool, Z.N. Sun, J.J. Wang, Z.F. Ge, M. Ali, CFD analysis of PWR surge line subjected to thermal stratification, Adv. Mater. Res. 1670 (2012) 78-82.
  10. M. Wang, T. Feng, D. Fang, et al., Numerical study on the thermal stratification characteristics of AP1000 pressurizer surge line, Ann. Nucl. Energy 130 (2019) 8-19. https://doi.org/10.1016/j.anucene.2019.01.054
  11. J.I. Lee, L. Hu, P. Saha, et al., Numerical analysis of thermal striping induced high cycle thermal fatigue in a mixing tee, Nucl. Eng. Des. 239 (5) (2009) 833-839. https://doi.org/10.1016/j.nucengdes.2008.06.014
  12. T. Lu, H.T. Li, X.G. Zhu, Numerical simulation of thermal stratification in an elbow branch pipe of a tee junction with and without leakage, Ann. Nucl. Energy 60 (2013) 432-438. https://doi.org/10.1016/j.anucene.2013.04.011
  13. Y. Zhang, T. Lu, P.X. Jiang, Y.H. Zhu, J. Wu, C.L. Liu, Investigation on thermal stratification and turbulent penetration in a pressurizer surge line with an overall out-surge flow, Ann. Nucl. Energy 90 (2016) 212-233.
  14. B. Tang, Y. Zhou, Numerical investigation on turbulent penetration and thermal stratification for the in-surge case of the AP1000 pressurizer surge line, Nucl. Eng. Des. 378 (2021).
  15. M. Kuschewski, R. Kulenovic, E. Laurien, Experimental setup for the investigation of fluidestructure interactions in a T-junction, Nucl. Eng. Des. 264 (2013) 223-230. https://doi.org/10.1016/j.nucengdes.2013.02.024
  16. C. Ensel, A. Colas, M. Barthez, Stress analysis of a 900 MW pressurizer surge line including stratification effects, Nucl. Eng. Des. 153 (1995) 197-203. https://doi.org/10.1016/0029-5493(95)90011-X
  17. H. Grebner, A. Ho€fler, Investigation of stratification effects on the surge line of a pressurized water reactor, Comput. Struct. 56 (1995) 425-437. https://doi.org/10.1016/0045-7949(95)00035-F
  18. Y.J. Yu, S.H. Park, G.H. Sohn, W.J. Bak, Structural evaluation of thermal stratification for PWR surge line, Nucl. Eng. Des. 178 (1997) 211-220. https://doi.org/10.1016/S0029-5493(97)00224-0
  19. S.-H. Kim, J.-B. Choi, J.-S. Park, Y.-H. Choi, J.-H. Lee, A Coupled cfd-fem analysis on the safety injection piping subjected to thermal stratification, Nucl. Eng. Technol. (2013) 237-248.
  20. T. Liu, S.B. Yi, X.C. Wang, Thermal stratification effects on surge line fatigue life based on finite element analysis, Adv. Mater. Res. 2295 (2013) 551-554.
  21. M. Kamaya, Assessment of thermal fatigue damage caused by local fluid temperature fluctuation (part I: characteristics of constraint and stress caused by thermal striation and stratification), Nucl. Eng. Des. 268 (2014a) 121-138. https://doi.org/10.1016/j.nucengdes.2013.12.041
  22. M. Kamaya, Assessment of thermal fatigue damage caused by local fluid temperature fluctuation (part II: crack growth under thermal stress), Nucl. Eng. Des. 268 (2014b) 139-150. https://doi.org/10.1016/j.nucengdes.2013.12.042
  23. Y. Zhang, T. Lu, Unsteady-state thermal stress and thermal deformation analysis for a pressurizer surge line subjected to thermal stratification based on a coupled CFD-FEM method, Ann. Nucl. Energy 108 (2017) 253-267. https://doi.org/10.1016/j.anucene.2017.04.034
  24. J. Zhang, C. Yan, P. Gao, Characteristics of pressure drop and correlation of friction factors for sing-phase flow in rolling horizontal pipe, J. Hydrodyn. 21 (2008) 614-621.
  25. A. Leonard, Energy cascade in Large-Eddy simulations of turbulent fluid flows, Adv. Geophys. 18 (1975) 237-248. https://doi.org/10.1016/S0065-2687(08)60464-1
  26. L. Xu, C. Xu, J.T. Fang, R.C. Deng, J.C. Li, Research on external environmental parameter standard for large civilian nuclear ship, Sh. Standard. Eng. 3 (2014) 12-17.
  27. T. Ishida, T. Yoritsune, Effects of ship motions on natural circulation of deep sea research reactor DRX, Nucl. Eng. Des. 215 (2002) 51-67. https://doi.org/10.1016/S0029-5493(02)00041-9