• Title/Summary/Keyword: Thermal Expansion Valve

Search Result 46, Processing Time 0.023 seconds

A Study on the Possibility for the Replacement of a Thermal Expansion Valve to an Electronic Expansion Valve (온도식팽창밸브의 전자식팽창밸브로의 대체 가능성에 관한 연구)

  • Han, Do-Young;Jeong, Seong-Woock
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.695-700
    • /
    • 2006
  • For the precise superheat temperature control of an air conditioner, an electronic expansion valve may be used instead of a thermal expansion valve. In this paper, technical and economical aspects of expansion valves were studied in order to find out the possibility to use an electronic expansion valve to replace a thermal expansion valve.

  • PDF

Optimal Design of Dual-Structured Disc of a Safety-Valve for the Specialized Pressure Vessel Considering Thermal Expansion (특수 압력요기용 안전밸브의 2중 구조로 디스크의 최적설계)

  • Kim, Chang-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.81-85
    • /
    • 2007
  • A safety valve is used for protecting the pressure vessel and facilities by discharging the operating fluid into the valve from the accident when the pressure is over the designated value. The fluid is sulfurous acid and nitric acid. etc. in the semi-conductor assembly line. Thus the valve elements material must be acid resistance. Teflon, which is used generally as inner parts of a valve, tends to easily sticks to sliding surface by thermal expansion under high temperature. Some studies are performed to change teflon to another material and shape to have a better fluidity under the condition. The analysis of the thermal expansion is conducted by commercial FEM software to improve the problems. Boundary conditions were temperature and load in this study. From the analysis, the thermal expansion of stainless steel is verified to be lower than that of teflon under high temperature. Thus coupled teflon/stainless steel-made valve is applied to assembly line without danger due to thermal expansion.

  • PDF

A Study on the Disc Design of a Safety-valve for the Specialized Pressure-vessel Considering Thermal Expansion (열팽창을 고려한 특수 압력용기용 안전밸브 디스크의 설계에 관한 연구)

  • Kang, Jae-Won;Kim, Chang-Ho;Kang, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1581-1584
    • /
    • 2007
  • The safety valve is the important equipment used to protect the pressure vessel and pressure facilities from overpressure by discharging the operation medium when the pressure of system is reaching the design pressure of the system. Some materials for a safety valve disk are studied in this paper. A studied safety valve has to resist sulfurous acid and nitric acid. etc. Furthermore teflon which is a general material of the valve easily sticks to a disk and a sliding part of the valve by thermal expansion. Therefore both teflon and stainless-steel are used to improve these problems. The analysis of the thermal expansion is conducted with commercial FEM software to improve the problems. Boundary conditions were temperature and load in this study. From the analysis, the thermal expansion of by teflon/stainless steel-made valve is lower than that of teflon-made valve under high temperature. Thus, teflon/stainless steel-made valve is safe and no malfunction by thermal expansion.

  • PDF

Thermal Properties and Microstructural Changes of Fe-Co System Valve Seat Alloy by High Densification Process (고밀도화 공정에 의한 Fe-Co 계 밸브시트 합금의 조직변화와 열적 특성)

  • Ahn, In-Shup;Park, Dong-Kyu;Ahn, Kwang-Bok;Shin, Seoung-Mok
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.112-118
    • /
    • 2019
  • Infiltration is a popular technique used to produce valve seat rings and guides to create dense parts. In order to develop valve seat material with a good thermal conductivity and thermal expansion coefficient, Cu-infiltrated properties of sintered Fe-Co-M(M=Mo,Cr) alloy systems are studied. It is shown that the copper network that forms inside the steel alloy skeleton during infiltration enhances the thermal conductivity and thermal expansion coefficient of the steel alloy composite. The hard phase of the CoMoCr and the network precipitated FeCrC phase are distributed homogeneously as the infiltrated Cu phase increases. The increase in hardness of the alloy composite due to the increase of the Co, Ni, Cr, and Cu contents in Fe matrix by the infiltrated Cu amount increases. Using infiltration, the thermal conductivity and thermal expansion coefficient were increased to 29.5 W/mK and $15.9um/m^{\circ}C$, respectively, for tempered alloy composite.

A Study on the Problem-Solving Method and Thermal Efficiency Properties at the Time of High Expansion Realization in a 4-Cycle Diesel Engine (4사이클 디젤기관에서 고팽창 실현 시 문제점 해결방안과 열효율 특성에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.835-842
    • /
    • 2009
  • The present thesis carried out a research on a compression pressure's reduction phenomenon and its countermeasure according to the thermal efficiency improvement method by a Miller method in 4-cycle low speed diesel engine. In case of retardation of intake valve closing time in a engine, the theoretical heat efficiency shows a remarkably reducing trend when a compression ratio is not compensated. Accordingly, the thermal efficiency showed an increasing trend in case of compensating the compression ratio. Especially, it could be understood that the theoretical heat efficiency at near ABDC $100^{\circ}$ of intake valve closing time in case of compensation of the compression ratio was improved by around 25.1%, and the mean effective pressure was also increased by around 18.6%. Also, as the retardation of intake valve closing time increases, air quantity becomes insufficient due to a backflow phenomenon of intake air and thus thermal efficiency was decreased in a high load operation domain. The solving method of this problem is possible by supercharge. Therefore, in order to improve thermal efficiency by retardation of ntake valve closing time, the thermal efficiency improvement according to low compression is possible when there are a compensation device of a compression ratio and a supercharge device. This is a problem-solving method of low compression and high expansion cycle.

EFFECT OF OVER-EXPANSION CYCLE IN A SPARK-IGNITION ENGINE USING LATE-CLOSING OF INTAKE VALVE AND ITS THERMODYNAMIC CONSIDERATION OF THE MECHANISM

  • Shiga, S.;Hirooka, Y.;Miyashita, Y.;Yagi, S.;Machacon, H.T.C.;Karasawa, T.;Nakamura, H.
    • International Journal of Automotive Technology
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • This paper presents further investigation into the effect of over-expansion cycle in a spark-ignition engine. On the basis of the results obtained in previous studies, several combinations of late-closing (LC) of intake valve and expansion ratio were tested using a single-cylinder production engine. A large volume of intake capacity was inserted into the intake manifold to simulate multi-cylinder engines. With the large capacity volume, LC can decrease the pumping loss and then increase the mechanical efficiency. Increasing the expansion ratio from 11 to 23.9 with LC application can produce about 13% improvement of thermal efficiency which was suggested to be caused by the increased cycle efficiency. The decrease of compression ratio from 11 to 5.5 gives little effect on the thermal efficiency if the expansion ratio could be kept constant. Thus, the expansion ratio is revealed to be a determining factor for cycle efficiency, while compression ratio is no more important, which suggests the usefulness of controlling the intake charge with intake valve closure timing. These were successfully explained by simple thermodynamic calculation and thus the mechanism could be verified by the estimation.

  • PDF

A Chancteristic of Thermal Efficiency in Order to High Expansion Realization with a Retard of Intake Valve Closing Time in the Low Speed Diesel Engine (저속 디젤기관에서 흡기밸브 닫힘시기 지연시 고팽창 실현을 위한 열효율 특성)

  • Jang Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.42-49
    • /
    • 2006
  • In this research. the diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting diesel engines to the high expansion diesel cycle, and general cycle features were analyzed after comparing these two cycles. Based on these analyses. an experimental single cylinder a long stroke with high expansion-diesel engine. of which S/B ratio was more than 3, was manufactured. After evaluating the base engine through basic experiments, a diesel engine was converted into the high expansion diesel engine by establish VCR device and VVT system Accordingly, the high expansion diesel cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case, heat efficiency increased by $5.0\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle, heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged pressure equipment. Then a high expansion diesel cycle engine is realized.

A Study on Safety Engineering & System Optimization in the Closed Piping System (밀폐배관계에 있어서의 열팽창에 대한 안전설계 및 시스템 최적 설정에 관한 고찰)

  • Char, Soon-Chul;Hwang, Soon-Yong;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • To improve the practical application of the thermal expansion of closed long pipeline exposing to external heating sources such as solar energy, safety engineering and system optimization for relief valve in the closed piping system are suggested through theoretical approach, correlation in view of temperature and pressure increase caused by external solar energy in the closed piping system. The profile for thermal relief valve including relieving capacity, influx heat energy, sizing criteria, set pressure, selection against back pressure is also presented. It is noted that following topic on solar relief valve should be applied to engineering, installation and commissioning.

The Realization of High Performance in a Hydrogen-Fueled Engine with External Mixture by Retarding Valve Timing and Super Charging (밸브 타이밍 지각과 과급에 의한 흡기관 분사식 수소기관의 고성능 실현)

  • Lee, Kwang-Ju;Hur, Sang-Hoon;Lee, Jong-Tae
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.6
    • /
    • pp.464-470
    • /
    • 2009
  • In order to analysis the possibility of high expansion and performance without backfire in a hydrogenfueled engine using external mixture injection, combustion characteristics and performance enhancement were analyzed in terms of retarding valve timing and increasing the boosting pressure. As the results, it was found that thermal efficiency increased by retarding intake valve timing with the same level of supplied energy is over 6.6% by the effect of high expansion including effect of combustion enhancement due to supercharging. It was also shown that the achievement of high power (equal to that of a gasoline engine), low brake specific fuel consumption and low emission (NOx of less than 16 ppm) without backfire in a hydrogen-fueled engine is possible around a boosting pressure of 1.5 bar, intake valve opening time of TDC and $\Phi$=0.35 in fuel-air equivalence ratio.

A Study on Engine Performance at the Intake Air Compensation by Supercharging in the Low Speed Diesel-Atkinson Cycle (과급에 의한 흡입공기 보상 시 저속 디젤-아트킨슨사이클에서 엔진성능에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1009-1015
    • /
    • 2011
  • In this study, in the high expansion cycle was conduced by variable valve timing system composition to close intake valve late, and in the intake air reduction on the low compression was solved by supercharging pressure. In this wise, by constituting Diesel-Atkinson cycle, this study looked into a possibility of thermal efficiency improvement. As a result, there was improvement in thermal efficiency and output in a whole range of closing timing from ABDC $40^{\circ}$ to ABDC $80^{\circ}$. However, after ABDC $70^{\circ}$ of closing timing, the thermal efficiency increase was getting smaller. As the result of the study, the optimum intake valve closing timing was about ABDC $70^{\circ}$, high loading territory of engine was more effective than low loading territory, and engine operation in middle loading territory was stable. At this time, brake thermal efficiency was 12.5% higher than ordinary engine on average.