• 제목/요약/키워드: Thermal Equipment

검색결과 774건 처리시간 0.029초

자연에너지 활용을 위한 지하철 승강장 열환경에 관한 연구 (Study on the Subway Platform Thermal Environment for using Natural Energy)

  • 김회률;김동규;금종수;정용현;박성출
    • 수산해양교육연구
    • /
    • 제21권2호
    • /
    • pp.269-277
    • /
    • 2009
  • Ventilation equipment performs a central role to maintain comfort subway environment. So ventilation equipment of Busan subway line No.1 is required to improve thermal environment. In this study, conditions of thermal environment are presented to improve ventilation equipment at existing subway station platforms by measuring thermal environment of platforms operated ventilation equipment at 14 stations of Busan subway line No.1. AWS of data in comparison with the neighbouring platforms and thermal environment analysis. Thermal environment status of subway platform analysis results are as follows. 1)Daytime platform temperature was higher than outdoor temperature, but night time platform temperature was lower than outdoor temperature. 2)Train wind had effect on improving thermal comfort in platform. 3)When outdoor temperature is below $24^{\circ}C$, inlet air is able to lower than platform temperature. 4)Considering existing ventilation system, night purge systems is useful to improving platform thermal environment.

반실험적 열소산 방법을 이용한 위성용 전장품 열해석 (A SATELLITE ELECTRONIC EQUIPMENT THERMAL ANALYSIS USING SEMI-EMPERICAL HEAT DISSIPATION METHOD)

  • 김정훈;전형열;양군호
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.32-39
    • /
    • 2006
  • A heat dissipation modeling method of EEE parts is developed for thermal design and analysis of an satellite electronic equipment. The power consumption measurement value of each functional breadboard is used for the heat dissipation modeling method. For the purpose of conduction heat transfer modeling of EEE parts, surface heat model using very thin ignorable thermal plates is considered instead of conventional lumped capacity nodes. These modeling methods are applied to the thermal design and analysis of CTU EM and EQM and verified by thermal cycling and vacuum tests.

EFFICIENT THERMAL MODELING IN DEVELOPMENT OF A SPACEBORNE ELECTRONIC EQUIPMENT

  • Kim Jung-Hoon;Koo Ja-Chun
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.270-273
    • /
    • 2004
  • The initial thermal analysis needs to be fast and efficient to reduce the feedback time for the optimal electronic equipment designing. In this study, a thermal model is developed by using power consumption measurement values of each functional breadboard, that is, semi-empirical power dissipation method. In modeling heat dissipated EEE parts, power dissipation is imposed evenly on the EEE part footprint area which is projected to the printed circuit board, and is called surface heat model. The application of these methods is performed in the development of a command and telemetry unit (CTU) for a geostationary satellite. Finally, the thermal cycling test is performed to verify the applied thermal analysis methods.

  • PDF

이동식부탄연소기의 조리기구재질에 따른 온도 특성 (Temperature Characteristics on Cooking Equipment Materials of Portable Gas Ranges)

  • 김대현;이근오
    • 한국안전학회지
    • /
    • 제29권3호
    • /
    • pp.8-13
    • /
    • 2014
  • Accidents involving portable ranges occurred total 133 cases for the last five years(2008~2012). It accounted for 18.0% of all gas accidents(739 cases). Major causes of accidents are using of excessive hot grill, leaving a butane can near fire and overheating of a butane can during cooking. In this study, it is a desire to investigate the relationship between thermal behavior mechanism depending on characteristics of cooking equipment materials of portable gas ranges. It shows that slope of temperature change curve correlates with difference of heat capacity on thermal behavior characteristics experiment depending on materials of cooking equipment. In conclusion, temperature characteristics appear differently depending on variables such as materials of cooking equipment. Especially, it is necessary to restrict using cooking equipment made of stones, because it is very dangerous that temperature of can is rapidly increasing caused by high heat capacity of stone.

고속 비행체 전자 장비의 안전성 예측을 위한 열해석 모델 구축 (The Development of Thermal Model for Safety Analysis on Electronics in High-Speed Vehicle)

  • 이진관;이민정;황수권
    • 한국항공우주학회지
    • /
    • 제49권5호
    • /
    • pp.437-446
    • /
    • 2021
  • 비행체의 속도가 빨라질수록, 비행 시 발생하는 공력 가열이 커진다. 고속 비행체의 속도가 빨라지면서 비행체의 외피는 수백 ℃까지 가열되기도 하며, 동시에 동체 내부의 전자장비들도 함께 가열되어 상대적으로 사용온도가 낮은 전자장비들의 열적 안전성이 위협받기 시작하였다. 이에 따라 개발 단계에서 전자장비의 온도 예측 및 외부시스템을 이용한 온도 조절 등 장비의 열적 안전성을 예측하고, 이를 확보하기 위한 다양한 시도가 있었다. 본 논문에서는 일회성 고속 비행체 내 장비의 열적 안전성을 예측할 수 있는 열 해석 모델을 구축하는 기술을 개발하였다. 장비 내부의 열전달 특성을 파악하기 위한 간단한 지상 모사실험을 수행하였고, 그 결과를 바탕으로 열전달 특성을 모사한 열 해석모델을 구축하였다. 이 기술을 활용하여 장비 열 해석 모델을 구축한다면, 비행 시장비 내부 구성품별 온도 변화를 예측할 수 있고, 더 나아가 열에 가장 취약한 특정 소자의 온도를 예측할 수 있기 때문에 더 정밀한 열적 안전성 예측이 가능하다.

지하역사 승강장 열환경 개선을 위한 연구 (제1보: 승강장 열환경 현황 및 실측결과) (The study for thermal environment improvement at subway station platform (Part 1: Thermal environment status and actual survey results))

  • 김희률;김동규;금종수;정용현;김종열;박성출
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.976-980
    • /
    • 2008
  • Ventilation equipment performs a cental role to maintain comfort subway environment. So ventilation equipment of Busan subway first line is needed to improvement thermal environment. In this study, condition of thermal environment is presented to improve ventilation equipment at existing subway station platforms by measuring thermal environment of platforms operated ventilation equipment at 14 stations of Busan subway first line. AWS of data in comparison with the neighbouring platforms and thermal environment analysis.

  • PDF

Engineering critical assessment of RPV with nozzle corner cracks under pressurized thermal shocks

  • Li, Yuebing;Jin, Ting;Wang, Zihang;Wang, Dasheng
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2638-2651
    • /
    • 2020
  • Nozzle corner cracks present at the intersection of reactor pressure vessels (RPVs) and inlet or outlet nozzles have been a persistent problem for a number of years. The fracture analysis of such nozzle corner cracks is very important and critical for the efficient design and assessment of the structural integrity of RPVs. This paper aims to perform an engineering critical assessment of RPVs with nozzle corner cracks subjected to several transients accompanied by pressurized thermal shocks. The critical crack size of the RPV model with nozzle corner cracks under transient loading is evaluated on failure assessment curve. In particular, the influence of cladding on the crack initiation of nozzle corner crack under thermal transients is studied. The influence of primary internal pressure and secondary thermal stress on the stress field at nozzle corner and SIF at crack front is analyzed. Finally, the influence of different crack size and crack shape on the final critical crack size is analyzed.

데이터센터의 합리적인 환경제어를 위한 장비 발열기준에 대한 연구 (A Study on a Heat-load of IT Equipments for the Thermal Environment Control in the Data Center)

  • 조진균;홍민호;정차수;김병선
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.938-943
    • /
    • 2006
  • The primary purpose of a computer room of data center and associated infrastructure is to support the operation of critical IT equipment. Traditionally, most owners of large critical data centers have been more than willing to accept a reasonable amount of computer room worker discomfort if necessary to support critical IT systems. All electrical equipment produces heat, which must be removed to prevent the equipment temperature from rising to an unacceptable level. Most information technology equipment and other equipment found in a data center or network room is air-cooled. Sizing a cooling system requires an understanding of the amount of heat produced by the equipment contained in the enclosed space, along with the heat produced by the other heat sources typically encountered.

  • PDF

자력팽창 및 아크 회전에 의한 배전급 $SF_6$ 복합소호부 개발 연구 (Investigation on $SF_6$ Hybrid Interrupter using Thermal Expansion and Arc Rotation Principle)

  • 이방욱;손종만;강종성;최원준;김영근;서정민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.919-921
    • /
    • 2000
  • This paper considers the research of the hybrid interrupter which adopts both rotating arc and thermal expansion technology. The operating principle of this device depends on rapid arc rotation due to the magnetic field created by the fault current through a coil which is mounted on contacts and also relies on the principle of thermal expansion created by arc energy in extinguishing chamber and finally causes pressure rise in expansion volume. In this research, the principle of the interrupting techniques are given and experimental results of hybrid interrupter which is developed by new technology is introduced.

  • PDF

Numerical Study on the Thermal Characteristics of the Various Cooling Methods in Electronic Equipment

  • Son, Young-Seok;Shin, Jee-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.46-55
    • /
    • 2004
  • Thermal characteristics of the various cooling methods in electronic equipment are studied numerically. A common chip cooling system is modeled as a parallel channel with protruding heat sources. A two-dimensional model has been developed for the numerical analysis of compressible. viscous. laminar flow. and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The assembly consists of two channels formed by two covers and one printed circuit board that is assumed to have three uniform heat source blocks. Various cooling methods are considered to find out the efficient cooling method in a given geometry and heat sources. The velocity and the temperature fields. the local temperature distribution along the surface of blocks. and the maximum temperature in each block are obtained. The results are compared to examine the thermal characteristics of the different cooling methods both quantitatively and qualitatively.