• Title/Summary/Keyword: Thermal Equilibrium

Search Result 376, Processing Time 0.03 seconds

Development of a Linear Stability Analysis Model for Vertical Boiling Channels Connecting with Unheated Risers

  • Hwang, Dae-Hyun;Yoo, Yeon-Jong;Zee, Seong-Quun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.572-585
    • /
    • 1999
  • The characteristics of two-phase flow instability in a vertical boiling channel connecting with an unheated riser are investigated through the linear stability analysis model. Various two-phase flow models, including thermal non-equilibrium effects, are taken into account for establishing a physical model in the time domain. A classical approach to the frequency response method is adopted for the stability analysis by employing the D-partition method. The adequacy of the linear model is verified by evaluating experimental data at high quality conditions. It reveals that the flow-pattern-dependent drift velocity model enhances the prediction accuracy while the homogeneous equilibrium model shows the most conservative predictions. The characteristics of density wave oscillations under low-power and low-quality conditions are investigated by devising a simple model which accounts for the gravitational and frictional pressure losses along the channel. The necessary conditions for the occurrences of type-I instability and flow excursion are deduced from the one-dimensional D-partition analysis. The parametric effects of some design variables on low quality oscillations are also investigated.

  • PDF

Calculations of Equilibrium Species and Solution Combustion Process for Spray Combustion Synthesis (SCS) (분사연소합성(SCS)을 위한 평형종 계산과 용액연소공정)

  • ;;;;Gary L. Messing
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.6
    • /
    • pp.545-550
    • /
    • 2001
  • 본 연구에서는 분사연소합성(SCS)을 위한 기초단계로서 용액연소합성에 대한 거동을 살펴보고자 알루미나 합성을 모델로 하였으며 이를 위해 전구체에 대한 열분해거동, 그리고 각 온도에서의 평형종 분압 계산 및 합성과정을 조사하였다. 각각의 열중량 분석(TGA) 결과 산화제와 환원제(연료)의 열분해 이력이 서로 다르게 나타났으며, 열역학 응용 프로그램인 ChemSag에 의한 평형종 분압의 계산에서 연소속도를 저하시킬 수 있는 $CO_2$와 수증기 가스 분압이 상당부분 존재하였다. 산화제/환원제 혼합물의 열분석(DTA/TG) 결과 산화제와 환원제의 열분해 거동의 차이, 그리고 매우 작은 시료의 양으로 인해 263$^{\circ}C$에서 발열피크가 매우 작게 나타났다. 열분석 시료에 비해 발열 에너지를 높이기 위해 산화제와 환원제 혼합 전구체를 비이커에서 증기압을 조절하며 가열시켜 본 결과 27$0^{\circ}C$에서 $\alpha$-Al$_2$O$_3$생성물을 얻을 수 있었다. 따라서 분사연소합성 반응을 통해 세라믹 원료를 합성하기 위해서는 연소과정 중 열분해 거동과 평형종의 분압을 고려하여야 한다.

  • PDF

A Lattice-Based Monte Carlo Evaluation of Canada Deuterium Uranium-6 Safety Parameters

  • Kim, Yonghee;Hartanto, Donny;Kim, Woosong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.642-649
    • /
    • 2016
  • Important safety parameters such as the fuel temperature coefficient (FTC) and the power coefficient of reactivity (PCR) of the CANada Deuterium Uranium (CANDU-6) reactor have been evaluated using the Monte Carlo method. For accurate analysis of the parameters, the Doppler broadening rejection correction scheme was implemented in the MCNPX code to account for the thermal motion of the heavy uranium-238 nucleus in the neutron-U scattering reactions. In this work, a standard fuel lattice has been modeled and the fuel is depleted using MCNPX. The FTC value is evaluated for several burnup points including the mid-burnup representing a near-equilibrium core. The Doppler effect has been evaluated using several cross-section libraries such as ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1.1, and JENDL-4.0. The PCR value is also evaluated at mid-burnup conditions to characterize the safety features of an equilibrium CANDU-6 reactor. To improve the reliability of the Monte Carlo calculations, we considered a huge number of neutron histories in this work and the standard deviation of the k-infinity values is only 0.5-1 pcm.

Effect of Nucleation and Growth Dynamics on Saturation Magnetization of Chemically Synthesized Fe Nanoparticles

  • Ogawa, T.;Seto, K.;Hasegawa, D.;Yang, H.T.;Kura, H.;Doi, M.;Takahashi, M.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.308-311
    • /
    • 2011
  • In order to obtain mono-dispersed Fe NPs with high saturation magnetization, quantitative analysis method to investigate the growth dynamics of the Fe NPs synthesized by a conventional thermal decomposition method has been developed. As a result, fast nucleation process promotes formation of ~4 nm of initial nucleus with a non-equilibrium phase, resulting in low saturation magnetization. And slow particle growth with atomic-scaled surface precipitation mode (< 100 atoms/($min{\cdot}nm^2$)) can form the growth layer on the surface of initial nucleus with high saturation magnetization (~190 emu/$g_{Fe}$) as an equilibrium a phase of Fe. Therefore, higher stabilization of small initial nucleus generated just after the injection of $Fe(CO)_5$ should be one of the key issues to achieve much higher $M_s$ of Fe NPs.

Temperature-Dependent Redox Isomerism via Intramolecular Electron Transfer. Synthesis and Properties of Co(dmppz)₂(3,6-dbq)₂ (dmppz=1,4-dimethylpiperazine; 3,6-dbq=3,6-di-tert-butyl-1,2-quinone)

  • 정옥상;조두환;박성호;손윤수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.628-631
    • /
    • 1997
  • The preparation and characterization of $Co(dmppz)_2(3,6-dbq)_2$ (dmppz=1,4-dimethylpiperazine; 3,6-dbq=3,6-di-tert-butyl-1,2-quinone) are established. Temperature-dependent magnetic moments (100-400 K), variable-temperature IR, and electronic spectra are presented to show that the title complex exhibits an equilibrium via a catechol to cobalt intramolecular electron transfer. At temperatures below 350 K, the charge distribution of the complex is $Co^Ⅲ(dmppz)_2(3,6-dbsq)(3,6-dbcat)$ (3,6-dbsq=3,6-di-tert-butyl-1,2-semiquinonato; 3,6-dbcat=3,6-di-tert-butylcatecholato) whereas at the temperature beyond 390 K, the complex is predominantly Co^Ⅱ(dmppz)_2(3,6-dbsq)_2$ form in the solid state. At the temperature range of 350-390 K a mixture of Co(Ⅲ) and Co(Ⅱ) redox isomers exist at equilibrium. The transition temperature (Tc) of Co(Ⅲ)/Co(Ⅱ) in solution is approximately 50° lower than that in the solid state. In particular, thermal analysis on solid sample of the complex discloses that the transition for the Co(Ⅲ)/Co(Ⅱ) is accompanied by the change in heat content of 12.30 kcal/mol.

A Numerical Study on the Pressure Drop and Heat Transfer in the Hot Channel of Plate heat Exchanger with Chevron Shape (쉐브론 형상 판형 열교환기의 고온 채널에서의 압력손실 및 열전달 특성에 관한 해석 연구)

  • Sohn, Sangho;Shin, Jeong-Heon;Kim, Jungchul;Yoon, Seok Ho;Lee, Kong Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.4
    • /
    • pp.175-185
    • /
    • 2018
  • This research investigates the internal flow and heat transfer in a plate heat exchanger with chevron shape by utilizing the computational fluid dynamics (CFD) software. The basic unit of the plate heat exchanger is generally composed of a hot channel, an intermediate chevron plate, and a cold channel. Several studies have reported experimental and numerical simulation of heat transfer and pressure drop. This study focused on the detailed numerical simulation of flow and heat transfer in the complicated chevron shape channel. The long chevron plate was designed to include 16 chevron patterns. For proper mesh resolution, the number of cells was determined after the grid sensitivity test. The working fluid is water, and its properties are defined as a function of temperature. The Reynolds number ranges from 900 to 9,000 in the simulation. A realizable $k-{\varepsilon}$ model and non-equilibrium wall function are properly considered for the turbulent flow. The friction factors and heat transfer coefficient are validated by comparing them with existing empirical correlations, and other patterned flow phenomena are also investigated.

First-principles Calculations of the Phonon Transport in Carbon Atomic Chains Based on Atomistic Green's Function Formalism

  • Kim, Hu Sung;Park, Min Kyu;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.425.1-425.1
    • /
    • 2014
  • Thermal transport in nanomaterials is not only scientifically interesting but also technological important for various future electronic, bio, and energy device applications. Among the various computation approaches to investigate lattice thermal transport phenomena in nanoscale, the atomistic nonequilibrium Green's function approach based on first-principles density functional theory calculations appeared as a promising method given the continued miniaturization of devices and the difficulty of developing classical force constants for novel nanoscale interfaces. Among the nanometerials, carbon atomic chains, namely the cumulene (all-doulble bonds, ${\cdots}C=C=C=C{\cdots}$) and polyyne (alternation of single and triple bonds, ${\cdots}C{\equiv}C-C{\equiv}C{\cdots}$) can be considered as the extream cases of interconnction materials for nanodevices. After the discovery and realization of carbon atomic chains, their electronic transport properties have been widely studied. For the thermal transport properties, however, there have been few literatures for this simple linear chain system. In this work, we first report on the development of a non-equilibrium Green's function theory-based computational tool for atomistic thermal transport calculations of nanojunctions. Using the developed tool, we investigated phonon dispersion and transmission properties of polyethylene (${\cdots}CH2-CH2-CH2-CH2{\cdots}$) and polyene (${\cdots}CH-CH-CH-CH{\cdots}$) structures as well as the cumulene and polyyne. The resulting phonon dispersion from polyethylene and polyene showed agreement with previous results. Compared to the cumulene, the gap was found near the ${\Gamma}$ point of the phonon dispersion of polyyne as the prediction of Peierls distortion, and this feature was reflected in the phonon transmission of polyyne. We also investigated the range of interatomic force interactions with increase in the size of the simulation system to check the convergence criteria. Compared to polyethylene and polyene, polyyne and cumulene showed spatially long-ranged force interactions. This is reflected on the differences in phonon transport caused by the delicate differences in electronic structure.

  • PDF

Thermal Stability of a Nanostructured Exchange-coupled Trilayer (나노구조 교환결합 삼층박막의 열적 안정성 예측)

  • Lee, Jong-Min;Lim, S.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.75-82
    • /
    • 2010
  • A recent progress on the prediction of the thermal stability of a nanostructured exchange-coupled trilayer is reviewed. An analytical/numerical combined method is used to calculate its magnetic energy barrier and hence the thermal stability parameter. An important feature of the method is the use of an analytical equation for the total energy that contains the magnetostatic fields. Under an assumption of the single domain state, the effective values of all the magnetostatic fields can be obtained by averaging their nonuniform values over the entire magnetic volume. In an equilibrium state, however, it is not easy to calculate the magnetostatic fields at the saddle point due to the absence of suitable methods of the accessing its magnetic configuration. This difficulty is overcome with the use of equations that link the magnetostatic fields at the saddle point and critical fields. Since the critical fields can readily be obtained by micromagnetic simulation, the present method should provide accurate results for the thermal stability of a nanostructured exchange-coupled trilayer.

Consistent thermal analysis procedure of LNG storage tank

  • Jeon, Se-Jin;Jin, Byeong-Moo;Kim, Young-Jin;Chung, Chul-Hun
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.445-466
    • /
    • 2007
  • As the LNG (Liquefied Natural Gas) tank contains cryogenic liquid, realistic thermal analyses are of a primary importance for a successful design. The structural details of the LNG tank are so complicated that some strategies are necessary to reasonably predict its temperature distribution. The proposed heat transfer model can consider the beneficial effects of insulation layers and a suspended deck on temperature distribution of the outer concrete tank against cryogenic conditions simply by the boundary conditions of the outer tank model. To this aim, the equilibrium condition or heat balance in a steady state is utilized in a various way, and some aspects of heat transfer via conduction, convection and radiation are implemented as necessary. Overall thermal analysis procedures for the LNG tank are revisited to examine some unjustifiable assumptions of conventional analyses. Concrete and insulation properties under cryogenic condition and a reasonable conversion procedure of the temperature-induced nonlinear stress into the section forces are discussed. Numerical examples are presented to verify the proposed schemes in predicting the actual temperature and stress distributions of the tank as affected by the cryogenic LNG for the cases of normal operation and leakage from the inner steel tank. It is expected that the proposed schemes enable a designer to readily detect the effects of insulation layers and a suspended deck and, therefore, can be employed as a useful and consistent tool to evaluate the thermal effect in a design stage of an LNG tank as well as in a detailed analysis.

Applications of the Fast Grain Boundary Model to Cosmochemistry (빠른 입계 확산 수치 모델의 우주화학에의 적용)

  • Changkun Park
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • Diffusion is a powerful tool to understand geological processes recorded in terrestrial rocks as well as extraterrestrial materials. Since the diffusive exchange of elements or isotopes may have occurred differently in the solar nebula (high temperature and rapid cooling) and on the parent bodies (fluid-assisted thermal metamorphism at relatively low temperature), it is particularly important to model elemental or isotopic diffusion profiles within the mineral grains to better understand the evolution of the early solar system. A numerical model with the finite difference method for the fast grain boundary diffusion was established for the exchange of elements or isotopes between constituent minerals in a closed system. The fast grain boundary diffusion numerical model was applied to 1) 26Mg variation in plagioclase of an amoeboid olivine aggregate (AOA) from a CH chondrite and 2) Fe-Mg interdiffusion between chondrules, AOA, and matrix minerals in a CO chondrite. Equilibrium isotopic fractionation and equilibrium partitioning were also included in the numerical model, based on the assumption that equilibrium can be reached at the interfaces of mineral crystals. The numerical model showed that diffusion profiles observed in chondrite samples likely resulted from the diffusive exchange of elements or isotopes between the constituent minerals. This study also showed that the closure temperature is determined not only by the mineral with the slowest diffusivity in the system, but also strongly depends on the constituent mineral abundances.