DOI QR코드

DOI QR Code

Applications of the Fast Grain Boundary Model to Cosmochemistry

빠른 입계 확산 수치 모델의 우주화학에의 적용

  • Changkun Park (Division of Earth Sciences, Korea Polar Research Institute)
  • 박창근 (극지연구소 지권연구본부)
  • Received : 2023.09.08
  • Accepted : 2023.09.22
  • Published : 2023.09.30

Abstract

Diffusion is a powerful tool to understand geological processes recorded in terrestrial rocks as well as extraterrestrial materials. Since the diffusive exchange of elements or isotopes may have occurred differently in the solar nebula (high temperature and rapid cooling) and on the parent bodies (fluid-assisted thermal metamorphism at relatively low temperature), it is particularly important to model elemental or isotopic diffusion profiles within the mineral grains to better understand the evolution of the early solar system. A numerical model with the finite difference method for the fast grain boundary diffusion was established for the exchange of elements or isotopes between constituent minerals in a closed system. The fast grain boundary diffusion numerical model was applied to 1) 26Mg variation in plagioclase of an amoeboid olivine aggregate (AOA) from a CH chondrite and 2) Fe-Mg interdiffusion between chondrules, AOA, and matrix minerals in a CO chondrite. Equilibrium isotopic fractionation and equilibrium partitioning were also included in the numerical model, based on the assumption that equilibrium can be reached at the interfaces of mineral crystals. The numerical model showed that diffusion profiles observed in chondrite samples likely resulted from the diffusive exchange of elements or isotopes between the constituent minerals. This study also showed that the closure temperature is determined not only by the mineral with the slowest diffusivity in the system, but also strongly depends on the constituent mineral abundances.

확산은 지구물질은 물론 운석과 같은 우주물질의 원소 및 동위원소 연구에서 매우 유용하게 활용될 수 있다. 고온의 태양계 성운에서 일어난 확산과 상대적으로 저온의 소행성에서 일어난 열수 변질 과정에서의 확산 양상은 다르기 때문에 광물에 기록된 원소 및 동위원소 확산에 대한 모델 수립은 초기 태양계 진화를 이해하는데 있어 특히 중요하다. 광물 입자 경계를 따라 일어나는 빠른 입계 확산은 닫힌계에서 구성 광물간 원소 또는 동위원소의 교환을 수치 모델화하는데 유용하며, 본 연구에서는 유한차분법을 이용하였다. 수립된 빠른 입계 확산 수치 모델은 1) CH 콘드라이트의 아메바 형태 감람석 집합체(amoeboid olivine aggregate; AOA)내 사장석의 마그네슘-26(26Mg) 동위원소 조성 변화와 2) CO 콘드라이트의 콘드률, AOA, 기질 구성 광물간 Fe-Mg 상호 확산에 적용되었다. 빠른 입계 확산을 통해 광물 결정의 표면에서는 평형상태에 도달할 수 있다는 가정에 기반해서 평형상태 동위원소 질량 분배(equilibrium isotopic fractionation)와 평형상태 원소 분배(equilibrium partitioning)도 수치 모델에 포함하였다. 모델을 통해 닫힌계를 구성하는 구성 광물간 원소 또는 동위원소의 교환과 확산으로 실제 운석에서 관찰된 원소 및 동위원소 조성 분포를 설명할 수 있음을 보였다. 또한 암석을 구성하는 광물이 여러 종류일 경우에 폐쇄 온도는 확산이 가장 느린 광물종에 의해서만 결정되는 것이 아니라 전체 광물들의 함량비에도 크게 영향을 받는다는 것을 확인할 수 있었다.

Keywords

Acknowledgement

논문 초안을 검토해 준 김태환 박사와 논문의 미비점을 지적해 준 익명의 심사자들께 감사드립니다. 연구는 해양수산부의 재원으로 극지연구소의 지원을 받아 수행되었습니다(과제번호: PE23050).

References

  1. Amelin, Y., Krot, A.N., Hutcheon, I.D. and Ulyanov, A.A., 2002, Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297(5587), 1678-1683.
  2. Bonamici, C.E., Kozdon, R., Ushikubo, T. and Valley, J.W., 2011, High-resolution PTt paths from δ18O zoning in titanite: A snapshot of late-orogenic collapse in the Grenville of New York. Geology 39(10), 959-962. https://doi.org/10.1130/G32130.1
  3. Buening, D.K. and Buseck, P.R., 1973, Fe-Mg lattice diffusion in olivine. J. Geophys. Res 78(29), 6852-6862. https://doi.org/10.1029/JB078i029p06852
  4. Campbell, A.J. and Humayun, M., 2004, Formation of metal in the CH chondrites ALH 85085 and PCA 91467. Geochim. Cosmochim. Acta 68(16), 3409-3422. https://doi.org/10.1016/j.gca.2003.11.007
  5. Campbell, A.J., Humayun, M., Meibom, A., Krot, A.N. and Keil, K., 2001, Origin of zoned metal grains in the QUE94411 chondrite. Geochim. Cosmochim. Acta 65(1), 163-180. https://doi.org/10.1016/S0016-7037(00)00526-3
  6. Chakraborty, S., 2008, Diffusion in solid silicates: A tool to track timescales of processes comes of age. Annu. Rev. Earth. Planet. Sci. 36, 153-190. https://doi.org/10.1146/annurev.earth.36.031207.124125
  7. Chizmadia, L.J., Rubin, A.E. and Wasson, J.T., 2002, Mineralogy and petrology of amoeboid olivine inclusions in CO3 chondrites: Relationship to parent-body aqueous alteration. Meteorit. Planet. Sci. 37(12), 1781-1796. https://doi.org/10.1111/j.1945-5100.2002.tb01163.x
  8. Chopra, R., Richter, F.M., Bruce Watson, E. and Scullard, C.R., 2012, Magnesium isotope fractionation by chemical diffusion in natural settings and in laboratory analogues. Geochim. Cosmochim. Acta 88, 1-18. https://doi.org/10.1016/j.gca.2012.03.039
  9. Clayton, R.N. and Mayeda, T.K., 1977, Correlated oxygen and magnesium isotope anomalies in Allende inclusions, I: Oxygen. Geophys. Res. Lett. 4(7), 295-298. https://doi.org/10.1029/GL004i007p00295
  10. Cole, D.R., Larson, P.B., Riciputi, L.R. and Mora, C.I., 2004, Oxygen isotope zoning profiles in hydrothermally altered feldspars: Estimating the duration of water-rock interaction. Geology 32(1), 29-32. https://doi.org/10.1130/G19881.1
  11. Connelly, J.N., Bizzarro, M., Krot, A.N., Nordlund, A., Wielandt, D. and Ivanova, M.A., 2012, The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338(6107), 651-655.
  12. Costa, F. and Chakraborty, S., 2008, The effect of water on Si and O diffusion rates in olivine and implications for transport properties and processes in the upper mantle. Physics of the Earth and Planetary Interiors 166(1-2), 11-29. https://doi.org/10.1016/j.pepi.2007.10.006
  13. Crank, J., 1975, The mathematics of diffusion, 2nd ed. Oxford University Press, New York.
  14. Dohmen, R., Becker, H.-W. and Chakraborty, S., 2007, Fe-Mg diffusion in olivine I: experimental determination between 700 and 1, ℃ as a function of composition, crystal orientation and oxygen fugacity. Phys. Chem. Miner. 34(6), 389-407. https://doi.org/10.1007/s00269-007-0157-7
  15. Dohmen, R. and Chakraborty, S., 2003, Mechanism and kinetics of element and isotopic exchange mediated by a fluid phase. Am. Miner. 88(8-9), 1251-1270. https://doi.org/10.2138/am-2003-8-908
  16. Dohmen, R. and Milke, R., 2010, Diffusion in polycrystalline materials: Grain boundaries, mathematical models, and experimental data. Rev. Miner. Geochem. 72(1), 921-970. https://doi.org/10.2138/rmg.2010.72.21
  17. Dohmen, R., Ter Heege, J.H., Becker, H.-W. and Chakraborty, S., 2016, Fe-Mg interdiffusion in orthopyroxene. Am. Miner. 101, 2210-2221. https://doi.org/10.2138/am-2016-5815
  18. Eiler, J.M., Baumgartner, L.P. and Valley, J.W., 1992, Inter-crystalline stable isotope diffusion: a fast grain boundary model. Contrib. Miner. Petrol. 112(4), 543-557. https://doi.org/10.1007/BF00310783
  19. Han, J., Park, C. and Brearley, A.J., 2022, A record of low-temperature asteroidal processes of amoeboid olivine aggregates from the Kainsaz CO3.2 chondrite. Geochim. Cosmochim. Acta 322, 109-128. https://doi.org/10.1016/j.gca.2022.02.007
  20. Hier-Majumder, S., Anderson, I.M. and Kohlstedt, D.L., 2005, Influence of protons on Fe-Mg interdiffusion in olivine. J. Geophys. Res. Solid Earth 110(B2).
  21. Imae, N. and Nakamuta, Y., 2018, A new mineralogical approach for CO3 chondrite characterization by X-ray diffraction: Identification of primordial phases and thermal history. Meteorit. Planet. Sci. 53(2), 232-248. https://doi.org/10.1111/maps.12996
  22. Ito, M. and Messenger, S., 2010, Thermal metamorphic history of a Ca, Al-rich inclusion constrained by high spatial resolution Mg isotopic measurements with NanoSIMS 50L. Meteorit. Planet. Sci. 45(4), 583-595. https://doi.org/10.1111/j.1945-5100.2010.01038.x
  23. Jacobsen, B., Yin, Q., Moynier, F., Amelin, Y., Krot, A.N., Nagashima, K., Hutcheon, I.D. and Palme, H., 2008, 26Al- 26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth Planet. Sci. Lett. 272, 353-364. https://doi.org/10.1016/j.epsl.2008.05.003
  24. Jenkin, G.R.T., Farrow, C.M., Fallick, A.E. and Higgins, D., 1994, Oxygen isotope exchange and closure temperatures in cooling rocks. J. Met. Geol. 12(3), 221-235. https://doi.org/10.1111/j.1525-1314.1994.tb00018.x
  25. Joesten, R., 1991, Grain-boundary diffusion kinetics in silicate and oxide minerals, Diffusion, atomic ordering, and mass transport. Springer, pp. 345-395.
  26. Jones, R.H. and Rubie, D.C., 1991, Thermal histories of CO3 chondrites: Application of olivine diffusion modelling to parent body metamorphism. Earth Planet. Sci. Lett. 106(1-4), 73-86. https://doi.org/10.1016/0012-821X(91)90064-O
  27. Kawasaki, N., Park, C., Sakamoto, N., Park, S.Y., Kim, H.N., Kuroda, M. and Yurimoto, H., 2019, Variations in initial 26Al/27Al ratios among fluffy Type A Ca-Al-rich inclusions from reduced CV chondrites. Earth Planet. Sci. Lett. 511, 25-35. https://doi.org/10.1016/j.epsl.2019.01.026
  28. Kawasaki, N., Simon, S.B., Grossman, L., Sakamoto, N. and Yurimoto, H., 2018, Crystal growth and disequilibrium distribution of oxygen isotopes in an igneous Ca-Al-rich inclusion from the Allende carbonaceous chondrite. Geochim. Cosmochim. Acta 221, 318-341. https://doi.org/10.1016/j.gca.2017.05.035
  29. Kawasaki, N., Wada, S., Park, C., Sakamoto, N. and Yurimoto, H., 2020, Variations in initial 26Al/27Al ratios among fine-grained Ca-Al-rich inclusions from reduced CV chondrites. Geochim. Cosmochim. Acta 279, 1-15. https://doi.org/10.1016/j.gca.2020.03.045
  30. Kita, N.T., Ushikubo, T., Knight, K.B., Mendybaev, R.A., Davis, A.M., Richter, F.M. and Fournelle, J.H., 2012, Internal 26Al-26Mg isotope systematics of a Type B CAI: Remelting of refractory precursor solids. Geochim. Cosmochim. Acta 86, 37-51. https://doi.org/10.1016/j.gca.2012.02.015
  31. Kita, N.T., Yin, Q.-Z., MacPherson, G.J., Ushikubo, T., Jacobsen, B., Nagashima, K., Kurahashi, E., Krot, A.N. and Jacobsen, S.B., 2013, 26Al-26Mg isotope systematics of the first solids in the early solar system. Meteorit. Planet. Sci. 48(8), 1383-1400. https://doi.org/10.1111/maps.12141
  32. Krot, A.N., Fagan, T.J., Nagashima, K., Petaev, M.I. and Yurimoto, H., 2005, Origin of low-Ca pyroxene in amoeboid olivine aggregates: Evidence from oxygen isotopic compositions. Geochim. Cosmochim. Acta 69(7), 1873-1881. https://doi.org/10.1016/j.gca.2004.06.046
  33. Krot, A.N., Nagashima, K., Bizzarro, M., Huss, G.R., Davis, A.M., Meyer, B.S. and Ulyanov, A.A., 2008, Multiple generations of refractory inclusions in the metal-rich carbonaceous chondrites Acfer 182/214 and Isheyevo. Astrophys. J. 672(1), 713-721. https://doi.org/10.1086/521973
  34. Krot, A.N., Park, C. and Nagashima, K., 2014, Amoeboid olivine aggregates from CH carbonaceous chondrites. Geochim. Cosmochim. Acta 139(0), 131-153. https://doi.org/10.1016/j.gca.2014.04.050
  35. Lee, T., Papanastassiou, D.A. and Wasserburg, G.J., 1977, Aluminum-26 in the early solar system-Fossil or fuel. Astrophys. J. Lett. 211, L107-L110. https://doi.org/10.1086/182351
  36. Loucks, R.R., 1996, A precise olivine-augite Mg-Fe-exchange geothermometer. Contrib. Miner. Petrol. 125(2-3), 140-150. https://doi.org/10.1007/s004100050211
  37. MacPherson, G.J., Kita, N.T., Ushikubo, T., Bullock, E.S. and Davis, A.M., 2012, Well-resolved variations in the formation ages for Ca-Al-rich inclusions in the early Solar System. Earth Planet. Sci. Lett. 331, 43-54. https://doi.org/10.1016/j.epsl.2012.03.010
  38. Meibom, A., Desch, S.J., Krot, A.N., Cuzzi, J.N., Petaev, M.I., Wilson, L. and Keil, K., 2000, Large-scale thermal events in the solar nebula: Evidence from Fe, Ni metal grains in primitive meteorites. Science 288(5467), 839-841.
  39. Meibom, A., Petaev, M.I., Krot, A.N., Wood, J.A. and Keil, K., 1999, Primitive FeNi metal grains in CH carbonaceous chondrites formed by condensation from a gas of solar composition. J. Geophys. Res 104(E9), 22053-22059. https://doi.org/10.1029/1999JE001052
  40. Muller, T., Dohmen, R., Becker, H., Ter Heege, J.H. and Chakraborty, S., 2013, Fe-Mg interdiffusion rates in clinopyroxene: experimental data and implications for Fe-Mg exchange geothermometers. Contrib. Miner. Petrol. 166(6), 1563-1576. https://doi.org/10.1007/s00410-013-0941-y
  41. Nagashima, K., Krot, A.N. and Komatsu, M., 2017, 26Al-26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites. Geochim. Cosmochim. Acta 201, 303-319. https://doi.org/10.1016/j.gca.2016.10.030
  42. Petaev, M.I., Wood, J.A., Meibom, A., Krot, A.N. and Keil, K., 2003, The ZONMET thermodynamic and kinetic model of metal condensation. Geochim. Cosmochim. Acta 67(9), 1737-1751. https://doi.org/10.1016/S0016-7037(02)00956-0
  43. Ruzicka, A., Floss, C. and Hutson, M., 2012, Amoeboid olivine aggregates (AOAs) in the Efremovka, Leoville and Vigarano (CV3) chondrites: A record of condensate evolution in the solar nebula. Geochim. Cosmochim. Acta 79(0), 79-105. https://doi.org/10.1016/j.gca.2011.11.043
  44. Schauble, E.A., 2011, First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbon-ate and hexaaquamagnesium (2+) crystals. Geochim. Cosmochim. Acta 75(3), 844-869. https://doi.org/10.1016/j.gca.2010.09.044
  45. Schwinger, S., Dohmen, R. and Schertl, H.-P., 2016, A combined diffusion and thermal modeling approach to determine peak temperatures of thermal metamorphism experienced by meteorites. Geochim. Cosmochim. Acta 191, 255-276. https://doi.org/10.1016/j.gca.2016.06.015
  46. von Seckendorff, V. and O'Neill, H.S.C., 1993, An experimental study of Fe-Mg partitioning between olivine and orthopyroxene at 1173, 1273 and 1423 K and 1.6 GPa. Contrib. Miner. Petrol. 113(2), 196-207. https://doi.org/10.1007/BF00283228
  47. Watson, E.B. and Baxter, E.F., 2007, Diffusion in solid-Earth systems. Earth Planet. Sci. Lett. 253(3-4), 307-327. https://doi.org/10.1016/j.epsl.2006.11.015
  48. Yurimoto, H., Morioka, M. and Nagasawa, H., 1989, Diffusion in single crystals of melilite: I. Oxygen. Geochim. Cosmochim. Acta 53(9), 2387-2394. https://doi.org/10.1016/0016-7037(89)90360-8